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A B S T R A C T   

Accurate prediction of DNA-protein binding (DPB) is of great biological significance for studying the regulatory 
mechanism of gene expression. In recent years, with the rapid development of deep learning techniques, 
advanced deep neural networks have been introduced into the field and shown to significantly improve the 
prediction performance of DPB. However, these methods are primarily based on the DNA sequences measured by 
the ChIP-seq technology, failing to consider the possible partial variations of the motif sequences and errors of 
the sequencing technology itself. To address this, we propose a novel computational method, termed MSDen-
seNet, which combines a new fault-tolerant coding (FTC) scheme with the dense connectional deep neural 
networks. Three important factors can be attributed to the success of MSDenseNet: First, MSDenseNet utilizes a 
powerful feature representation approach, which transforms the raw DNA sequence into fusion coding using the 
fault-tolerant feature sequence; Second, in terms of network structure, MSDenseNet uses a multi-scale convo-
lution within the dense layer and the multi-scale convolution preceding the dense block. This is shown to be able 
to significantly improve the network performance and accelerate the network convergence speed, and third, 
building upon the advanced deep neural network, MSDenseNet is capable of effectively mining the hidden 
complex relationship between the internal attributes of fusion sequence features to enhance the prediction of 
DPB. Benchmarking experiments on 690 ChIP-seq datasets show that MSDenseNet achieves an average AUC of 
0.933 and outperforms the state-of-the-art method. The source code of MSDenseNet is available at https://gith 
ub.com/csbio-njust-edu/msdensenet. The results show that MSDenseNet can effectively predict DPB. We antic-
ipate that MSDenseNet will be exploited as a powerful tool to facilitate a more exhaustive understanding of DNA- 
binding proteins and help toward their functional characterization.   

1. Introduction 

Proteins that can bind to specific nucleotide sequences in the up-
stream of a gene are called transcription factors (TFs). Transcription 
factor binding site (TFBS) refers to a DNA fragment that binds to specific 
TFs. It is called motif, which is often located in the upstream region of 
the gene. The length of motif is generally in the range of 4-30bp [1–3], it 

usually regulates multiple genes at the same time. To some extent, its 
binding sites on different genes are conservative, but not identical [4,5]. 
Therefore, they often appear in similar forms, but some variation is 
allowed. TFBS interact with TFs to regulate the transcription process of 
genes. These binding regions in the recognition sequence, namely TFBS 
recognition, play a key role in gene regulation and biomolecular func-
tion [6,7]. The accurate identification of TFBS also provides technical 
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support for analyzing protein function, discovering diseases and 
designing new drugs [8,9]. With the development of high-throughput 
sequencing technology [10], such as ChIP-seq [11], ChIP-exo [12] and 
ChIP-nexus [13], a great amount of experimentally verified TFBS has 
been accumulated. The sequencing cost has decreased significantly 
compared with the past, and various biological data have increased 
explosively, including high-quality TFBS experimental data such as 
TRANSFAC [14] and Jaspar [15]. High throughput sequencing tech-
nology has laid the foundation of “big data” in bioinformatics. Facing 
the tide of gene sequence data, it has brought great challenges to the 
research of follow-up genome analysis methods and the development of 
tools. In recent years, with the rapid development of bioinformatics 
technology, more and more experts in the field of computer and math-
ematics have joined the team of bioinformatics research, and many 
calculation methods have been applied to the task of identifying DPB 
[16–24]. 

Using traditional machine learning technology, researchers have 
developed many methods for predicting DPB. For example, Nitin et al. 
[22] used support vector machine (SVM) to combine different features 
to build a model that can recognize DNA binding proteins. Wong et al. 
[23] combined Hidden Markov Model (HMM) and belief propagation to 
predict DPB. Ghandi et al. [24] used gaped k-mers and support vector 
machine, developed an efficient tree data structure for calculating 
kernel matrix to predict DNA-binding sites. However, with the devel-
opment of next-generation high-throughput DNA sequencing technol-
ogy, DNA sequences are amplified in large quantities. Traditional 
machine learning algorithms cannot meet the current needs in efficiency 
and precision because they rely on artificial feature extraction. 

In recent years, with the continuous development of deep learning 
technology, there have been many breakthroughs in computer vision 
[25,26] and natural language processing [27,28]. Because of their effi-
cient performance, scientists studying bioinformatics and computational 
biology also use these advanced deep learning technologies to solve 
many related problems [29–31]. For example, in the DPB problem, the 
deep learning methods [16,17,20] have achieved better results than the 
traditional machine learning method. Alipanahi et al. [16] pioneering 
developed a deep convolution neural network model called DeepBind, 
which can be used to predict the sequence specificity of DNA and RNA 
binding proteins. Zeng et al. [17] determined the architecture with the 
best performance by changing the width, depth and pool design of CNN, 
and discussed the method of matching the CNN architecture with a given 
task. Luo et al. [18] effectively combined probabilistic model with CNN 
to improve DPB prediction. However, the nucleotide dependence and 
different binding length of different TFs can affect the prediction effect. 
HOCNN [32] used high-order coding method to establish high-order 
dependence between nucleotides, and used multi-scale convolution 
layer to capture motif features of different lengths. Du et al. [33] further 
considered the complementarity of DNA sequences, proposed a method 
to fuse different sequence features, and systematically analyzed them 
through multi-scale CNN. The above algorithms are developed based on 
CNN. While they have achieved good performance, they are also limited 
by the characteristics of convolution operation, that is, convolution can 
only focus on the extraction of local information. Such characteristics 
make it have obvious defects in processing long sequences. KEGRU [34] 
constructed a deep bidirectional Gated Recursive Unit (GRU) model for 
feature learning and classification. This method identifies TFBS by 
combining bidirectional GRU with k-mer embedding. Since then, some 
researchers combined the respective advantages of CNN and RNN to 
design hybrid models such as DeepSite [35], DeepTF [36] and DeepRAM 
[37] to predict DPB. Zhang et al. [38] proposed a novel motif discovery 
method, namely FCNA which incorporates a FCN, a global average 
pooling, and a hard negative mining loss. In contrast to predicting 
sequence specificity for DPB (i.e. sequence-level binary classification 
task), FCNA achieves localization of TFBS and prediction of DPB motifs 
at the nucleotide-level. He et al. [39] analyzed and compared some deep 
learning methods, and experiments proved that more complex models 

tended to perform better than simpler models on large-scale datasets. 
Shen et al. [20] recently proposed a deep learning method called SAR-
esNet, which combines self-attention and residual structure, and uses 
the method of transfer learning to predict DPB from DNA sequence. After 
that, they further proposed MAResNet [21], which combines multi-scale 
bottom-up and top-down attention with residual networks to further 
improve the prediction performance. Although these advanced deep 
learning methods have achieved excellent results, they suffer from the 
following two drawbacks: First, in the feature representation stage, most 
of them only used the 4 one-hot vectors to encode four independent 
nucleotides, ignoring the dependence between two adjacent nucleo-
tides. However, the high-order dependences among nucleotides within 
TFBS can not only improve the discriminative capability, but also pro-
duce better motif representation [40–42]. Furthermore, such methods 
also ignored the possible partial variation of nucleotide sequence [43] 
and the error of sequencing technology itself; Second, in the model 
design stage, most methods only considered using a fixed motif length to 
capture the binding features in the genome sequence, which is inade-
quate and might lose important contextual information. To address this, 
we can design and add multi-scale convolution layers to the network 
structure to improve the prediction accuracy and robustness of the 
model. 

In this study, we propose a Multi-Scale Dense Convolutional 
Network-based approach, termed MSDenseNet, for improving the pre-
diction of DPB. An important hallmark of MSDenseNet is that it com-
bines the raw DNA sequence with the fault-tolerant feature sequence for 
fusion encoding, and in this manner, it can better integrate the high- 
order dependence between the nucleotides and multi-scale motif fea-
tures into the original DenseNet [26]. Extensive benchmarking experi-
ments show that compared with the most advanced methods, our 
developed model can achieve the best predictive performance with an 
average AUC value of 0.933 on 690 ChIP-seq datasets. To facilitate the 
community-wide exploration of this new method, we have built an on-
line webserver of MSDenseNet at http://csbio.njust.edu.cn/bioinf/m 
sdensenet. In addition, we have also released the source code of 
MSDenseNet at https://github.com/csbio-njust-edu/msdensenet. 

2. Materials and methods 

2.1. Benchmark datasets 

In this study, we used the 690 ChIP-seq experimental datasets pro-
vided by the Encyclopedia of DNA Elements (ENCODE) project [44]. The 
690 ChIP-seq datasets covered the DNA sequences of 91 human cell 
types bound to 161 unique regulatory factors, some of which were under 
various treatment conditions. For each of the 690 ChIP-seq datasets, 
Zeng et al. [17] divided it into the corresponding training subsets and 
testing subsets, in which the training subsets accounted for 80% while 
the testing subsets accounted for 20%, respectively. Each training subset 
and testing subset includes a positive subset and a negative subset 
respectively. The positive subset consists of the centering 101 bp region 
of each ChIP-seq peak, and the negative subset consists of shuffled 
positive sequences with matching dinucleotide composition. The ‘fas-
ta-dinucleotide-shuffle’ package in MEME [45] was used for shuffling. 
These datasets can be downloaded at http://cnn.csail.mit.edu/motif_d 
iscovery/. 

In order to meet the pre-training requirements for transfer learning, 
Shen et al. [20] constructed a set of global datasets based on 690 
ChIP-seq datasets. They used the under-sampling strategy to construct 4, 
614,580 training sequences based on 690 training subsets and 800,000 
testing sequences based on 690 testing subsets. This partition could 
effectively ensure the independence of training and testing subsets. 4, 
614,580 training sequences were divided into a global training set and a 
global validation set in a ratio of 9:1, and 800,000 testing sequences 
were valued as a global testing set. In addition, they combined training 
and testing sets of several typical cell lines based on 690 ChIP-seq 
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datasets, respectively, and split them into training and testing data in a 
ratio of 8:2. The training data was further divided into training set and 
validation set in a ratio of 8:2. Four cell line datasets were generated, 
namely A549, H1-hESC, HUVEC and MCF-7 [21]. During the construc-
tion of these datasets, the ‘cd-hit-est-2d’ [46] tool was used to remove 
the sequence redundancy and ensure the independence of the testing set. 
All these datasets are publicly available at http://csbio.njust.edu.cn/ 
bioinf/maresnet/. A statistical summary of these five benchmark data-
sets is provided in Table 1. 

2.2. Feature representation 

Different from other methods that used the raw DNA sequence for 
feature coding directly, the input of MSDenseNet included the possible 
partial variation of nucleotide sequence [43] and the error of sequencing 
technology to a certain extent. The DNA sequence was composed of four 
different bases [A, C, G, T]. For two adjacent bases, considering the 

possibility of variation (or sequencing error), we proposed a new 
sequence encoding scheme, termed Fault-Tolerant Coding (FTC), in 
order to encode more informative features. 

2.2.1. Fault-tolerant coding 
Specifically, for a given raw DNA sequence, we scanned it using 

sliding windows of sizes 1 and 2, respectively. After scanning the 
sequence with a sliding window of size 1, a sequence Seq1 of length L (L 
= 101bp) consisting of the Alphabet1 = {A, C, G, T} was obtained. After 
scanning the sequence with a sliding window of size 2, a sequence Seq2 
of length L-1 was obtained, which consisted of the Alphabet2 = {AA, AC, 
AG, AT, CA, CC, CG, CT, GA, GC, GG, GT, TA, TC, TG, TT}. Considering 
the possible partial variation of the nucleotide sequence [43], we used 
the wildcard “*” to represent the possible variation of nucleotides, that 
is, “*” represents any one of A, C, G, or T. For example, we treated the 
dinucleotides “AA”, “CA”, “GA”, and “TA” as “*A”, which represents a 
mutation at the position 1 in the dinucleotide. Similarly, if the position 2 

Table 1 
A statistical summary of the five benchmark datasets.  

Dataset Subset Number of positive samples Number of negative samples Total number of samples 

global datasets global-TRa/global-VLb (90%/10%) 2,307,290 2,307,290 4,614,580 
global-TSc 400,000 400,000 800,000 

A549 TRd/VLe (80%/20%) 459,740 459,472 919,212 
TSf 114,777 115,045 229,822 

H1-hESC TR/VL (80%/20%) 607,774 608,088 1,215,862 
TS 152,155 151,841 303,996 

HUVEC TR/VL (80%/20%) 255,931 255,812 511,743 
TS 63,912 64,031 127,943 

MCF-7 TR/VL (80%/20%) 433,823 434,368 868,191 
TS 108,801 108,256 217,057 

a,b global-TR and global-VL denote the training set and validation set of the global datasets, respectively. 
c global-TS denotes the testing set of the global datasets. 
d,e TR and VL denote the training set and validation set of the related dataset, respectively. 
f TS denotes the testing set of the relevant dataset. 

Fig. 1. Graphical illustration of the coding mechanism of FTC.  
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in the dinucleotide was mutated, then “AA”, “AC”, “AG”, and “AT” 
would be regarded as “A*”. According to the sequence Seq2 composed of 
dinucleotides, we considered the possibility of mutation at the positions 
1 and 2, respectively, and accordingly generated the sequence Seq3 
consisting of the Alphabet3 = {*A, *C, *G, *T} and the sequence Seq4 
consisting of the Alphabet4 = {A*, C*, G*, T*}. Finally, we added the 
sequences Seq1, Seq3 and Seq4 to generate a fault-tolerant sequence Seq 
of length 3L-2, consisting of the Alphabet = {A, C, G, T, *A, *C, *G, *T, 
A*, C*, G*, T*}. Fig. 1 provides a graphical illustration of the coding 
mechanism of our proposed FTC encoding method. In Fig. 1, each al-
phabet in the sequence Seq is encoded as a feature vector of size 12, that 
is, A→ [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], …, T*→[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 1]. The input matrix Si,j of the deep network can be encoded by the 
following equation: 

Si,j=
{

1, ​ if ​ Seqi = jth ​ base ​ in ​ Alphabet ​
0, ​ otherwise (1)  

where i∈[1, 301], j∈ [1,12]. 

2.3. Model architecture and training procedures 

In this study, we processed the input feature of neural network as a 
12-channel image feature with the length of 301. In this way, the DPB 
prediction task in bioinformatics can be transformed as an image binary 
classification problem in computer vision. A number of advanced deep 
learning algorithms [18,20,37] have been applied to this field and 

shown excellent performance. In recent years, in order to further 
improve the model performance in real-world scenarios, convolutional 
neural networks have been designed with a more complex deep struc-
ture [25,26]. Use of multiple convolution kernels to extract richer fea-
tures has also been widely used in the fields of computer vision [47]. 

2.4. The structure of dense block and multi-scale convolution 

Huang et al. proposed DenseNet [26] in 2017 by leveraging the ad-
vantages of ResNet [25]. Compared with residual block of ResNet, 
Huang et al. creatively proposed dense block. Each dense block consists 
of multiple dense layers. Fig. 2 shows the structure of the dense layer. As 
can be seen, there exists a direct connection between any two dense 
layers, that is to say, the input of each layer of the network is the set of 
the outputs of all preceding layers; further, the features learned by this 
layer will also be directly passed as the input to all the subsequent layers. 
Through such a dense connection structure, sufficient reuse of features 
can be achieved, and accordingly, the number of parameters is reduced 
to a certain extent. In this way, the problem of gradient disappearance is 
effectively alleviated. The dense connections are given by the following 
equation: 

xl =Hl([x0, x1, ..., xl− 1]) (2)  

where xl is the output of the l-th layer, [x0, x1, …, xl-1] is the splicing of 
the characteristic diagrams generated by each layer, while Hl (⋅) denotes 
the nonlinear conversion function. 

Fig. 2. The structure of the dense layer.  

Fig. 3. The network structure of MSDenseNet: (A) The overall structure of the network. (B) The multi-scale convolution network preceding the dense block. (C) The 
multi-scale convolution network within the dense layer, where N denotes the number of the dense layers. 
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Considering that different TFs have different binding lengths [48, 
49], it is difficult to fully capture the binding characteristics in genomic 
sequences using fixed motif lengths. In this work, refer to the Inception 
[47] module in computer vision and the HOCNN [32], we added a series 
of fixed filters (convolution kernels) of different sizes to the original 
DenseNet [26] to capture multi-scale features. However, in order to 
balance the performance and computational complexity of the model, 
we chose convolution kernels with the sizes of 3, 5 and 7, respectively. 
Fig. 3B and C shows the detailed structure of multi-scale convolution 
before the dense block and within the dense layer, respectively. We can 
get the output X through the convolution of kernel M and the vectors S. 
The multi-scale convolution can be realized by the following equation: 

Xi,k =Conactenate
m∈Φ

(

max

(

0,
∑m

j=1

∑12

c=1
Si+j,cMk,j,c + bk

))

(3)  

where i∈[1, l], l represents the length of the input sequence, k∈[1, d], 
d represents the number of the convolution kernels, Φ represents a set of 
convolution kernels sizes, m represents the size of the convolution 
kernel, c represents the number of channels, bk represents the bias term, 
respectively. 

The added multi-scale convolution is able to extract informative 
features of different scales, thereby providing richer features. Theoret-
ically, the more diverse the features, the better the predictive perfor-
mance of the model. In addition, the convolution kernels of different 
sizes were used for feature extraction, and then the features with strong 
correlation were gathered together. In this way, the convolution of each 
size only output a part of all features, which can gather the features with 
strong correlation in advance to accelerate the convergence. At the same 
time, compared with the sparse feature set output by a single convolu-
tion kernel, the output of multi-scale convolution can be exploited as 
multiple densely distributed feature subsets. In light of the principle of 
decomposing sparse matrix into dense matrix [50], the convergence 
speed of the model can be accelerated. 

2.5. Implementation of the neural network architecture of MSDenseNet 

Multi-scale convolution is capable of capturing rich features to 
improve the predictive performance of the model and accelerate its 
convergence. Therefore, we proposed and implemented the MSDense-
Net pipeline. Fig. 3 shows the main structure of MSDenseNet. Its struc-
ture contains three dense block modules, each of which comprises a 
different number of dense layers. The numbers of the dense layers 
contained in the three dense blocks were 6, 12, and 8, respectively. The 
channel hyperparameters were set to 96 while the channel growth rate 
was set to 16, respectively. 

Firstly, we used the FTC encoded DNA sequence as the input of the 
network. Then, we applied the three convolution kernels of sizes 1 × 3, 
1 × 5, and 1 × 7, respectively for feature extraction. After that, we used 
the ReLU activation function, spliced the three branches and then 
applied the max-pooling layer for further down sampling. Each dense 
block consisted of multiple dense layers. In this work, we used three 
dense blocks, each of which contained 6, 12 and 8 dense layers 
respectively. In each dense layer, the output of the previous layer first 
passed through the batch normalization layer and the ReLU layer 
respectively. Secondly, through 1 × 1 convolution, it cannot only reduce 
the dimension and reduce the amount of calculation, but also integrate 
the characteristics of each channel. Again, through the batch normali-
zation layer and ReLU layer, three convolution layers with the sizes of 1 
× 3, 1 × 5 and 1 × 7 were followed. Finally, we combined the extracted 
features of the three convolution kernels with the original input features 
to form the output of this layer. In addition, between each dense block, 
we used the batch normalization and ReLU layers, and also used 1 × 3, 1 
× 5 and 1 × 7 multi-scale convolution layers to extract the features. 
Afterwards, we used the average pooling layer to reduce the number of 
parameters and save the computing power, which also helped control 

the overfitting [51] to a certain extent. At the end of the last dense block, 
we employed the global average pooling to regularize the structure of 
the whole network to prevent overfitting, and then connected the soft-
max classifier to generate the probability distribution of the two tags. 

2.6. Hyper-parameter settings 

We implemented MSDenseNet using PyTorch (v1.8.1) [52] and 
conducted the experiments on the computing resources of 1/4 NVIDIA 
Tesla A100 Graphics Card. During our experiments, the softmax cross 
entropy function and SGD method [53] were used to optimize the 
model. The detailed settings of the model’s hyperparameters are listed in 
Table 2. First, we searched a group of hyper-parameters that could 
ensure a high performance of the model by enumerating all the possible 
values of each hyper-parameter listed in Table 2 on the datasets of A549, 
H1-hESC, HUVEC and MCF-7 cell lines. Then, we applied such a set of 
hyper-parameters to the training global dataset to construct an excellent 
pre-training model. Finally, we applied the pre-training model to 
perform transfer learning on 690 ChIP-seq datasets and evaluated the 
performance of the model in each of the datasets. 

2.7. Assessing predictive ability 

DPB prediction is a typical binary classification problem. As such, the 
metrics used to evaluate the classification performance of binary classes 
are also suitable for evaluating the prediction performance of DPB. In 
this study, we used accuracy, precision, recall and F1 score as the main 
performance metrics to evaluate the performance of different predictors. 
These metrics are defined as follows: 

Acc=
TP+ TN

TP+ TN + FP+ FN
(4)  

Precision=
TP

TP+ FP
(5)  

Recall=
TP

TP+ FN
(6)  

F1=
2 × Precision× Recall
Precision+ Recall

(7)  

where TP, FN, TN and FP denote the numbers of true positives, false 
negatives, true negatives and false positives, respectively. 

However, with the change of the prediction cut-off threshold, the 
values of the above four evaluation indicators will also accordingly 
change. For example, assume that the predicted protein binding prob-
ability is 0.67. If the cut-off threshold is 0.5, the sequence will be 
identified as containing TFBS (i.e., the label is 1), and if the cut-off 
threshold is 0.7, the sequence will be identified as not containing 
TFBS (i.e., the label is 0). Therefore, a metric that does not change with 
the cut-off threshold and can still measure the prediction performance is 
needed to evaluate the predictors. The area under receiver operating 
characteristic (ROC) curve (AUC) meets such requirements, which is 
used as another major performance index in this study. The value of AUC 

Table 2 
The hyper-parameter settings of MSDenseNet.  

Hyper-parameter Choice Sampling 

dropout ratio (dense layer) 0.1, 0.2, 0.3 all evaluation 
kernel size 3⊕5⊕7a Fixed 
learning rate (pre-training) 1 × 10− 3, 2 × 10− 3, 3 × 10− 3 all evaluation 
learning rate (transfer learning) 2 × 10− 4, 4 × 10− 4, 6 × 10− 4 all evaluation 
batch size (pre-training) 32, 64, 128 all evaluation 
batch size (transfer learning) 32, 64, 128 all evaluation 
optimizer SGD Fixed 
loss softmax cross entropy Fixed  

a 3⊕5⊕7 denotes the concatenation of the three kernel sizes. 
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is between 0 and 1. The closer its value is to 1, the better the predictive 
performance of the model. 

3. Results and discussion 

3.1. Multi-scale convolution improves the model performance 

In this study, we added the multi-scale convolutions (1 × 3, 1 × 5, 1 
× 7) within the dense layers and before each dense block to extract the 
features. Such operation will extract features of different scales, which 
makes the features more abundant and also means that the prediction 
performance of the model might be improved. We compared the per-
formance of different network structures on four different cell line 
datasets. 

3.1.1. Ablation experiments 
Various structures in MSDenseNet were investigated to provide in-

sights into MSDenseNet’s performance. We have evaluated four main 
structures, i.e., the original DenseNet, adding multi-scale convolution 
before the dense block, adding multi-scale convolution within the dense 
layer, and adding multi-scale convolution before the dense block and 
within the dense layer at the same time. Fig. 4A shows the performance 

(AUC) of different structural networks on four cell line datasets in the 
form of a line chart. From Table 3, we can see that adding the multi-scale 
convolution within the dense layer achieved the better performance 
compared with the original DenseNet, across all four cell line datasets 
under the evaluation of the performance metric AUC. 

However, due to its densely connected structure, the output of each 
layer was used as the input of the subsequent layers. As a consequence, 
the computational complexity would be considerably increased, with 
the model becoming complex and the convergence speed not being 
improved. To solve this problem, we added a structure similar to 
Inception [47] before each dense block module, and applied the prin-
ciple of decomposing sparse matrix into dense matrix calculation, 
thereby making the convergence speed of the model much faster. The 
input data of the traditional convolution layer is only convolved with a 
convolution kernel of one scale, and the data of a fixed dimension is the 
output. All the output features are basically evenly distributed in this 
scale range, which can be considered as the output of a sparse distrib-
uted feature set. 

Nevertheless, in this study, by extracting the features at multiple 
scales (1 × 3, 1 × 5, 1 × 7), the output features were no longer uniformly 
distributed; instead, highly correlated features were clustered together. 
These can be regarded as multiple densely distributed feature subsets. In 

Fig. 4. Experimental results of the networks with different structures on the A549, H1-hESC, HUVEC and MCF-7 datasets. (A) displays the AUC values of the 
networks trained with different structures. (B) displays the training epochs required by training networks with different structures. ‘original’ indicates that the 
original DenseNet is used, ‘before’ indicates that multi-scale convolution is added before the dense block, ‘within’ indicates that multi-scale convolution is added 
within the dense layer, and ‘before&within’ indicates that multi-scale convolution is added before the dense block and within the dense layer concurrently. 

Table 3 
Experimental results of ablation comparisons.a  

Dataset Structure Epochb Accuracy Precision Recall F1 score AUC 

A590 originalc 71 0.833 0.940 0.711 0.810 0.933 
befored 29 0.860 0.894 0.817 0.853 0.936 
withine 39 0.826 0.957 0.681 0.796 0.939 
before&withinf 20 0.837 0.785 0.928 0.850 0.939 

H1hesc original 63 0.859 0.880 0.831 0.855 0.934 
before 24 0.862 0.888 0.828 0.857 0.936 
within 34 0.848 0.933 0.749 0.831 0.937 
before&within 25 0.834 0.780 0.933 0.849 0.941 

Huvec original 56 0.801 0.968 0.623 0.758 0.935 
before 25 0.859 0.846 0.877 0.861 0.937 
within 47 0.848 0.935 0.747 0.830 0.938 
before&within 17 0.860 0.913 0.796 0.850 0.938 

Mcf7 original 53 0.867 0.908 0.818 0.861 0.942 
before 28 0.873 0.886 0.856 0.871 0.945 
within 49 0.862 0.948 0.768 0.848 0.948 
before&within 25 0.867 0.842 0.906 0.873 0.948  

a FTC was used in the ablation experiments for network structure. 
b Terminate the training when the AUC of the validation set dropped for ten consecutive times, record the best AUC and epoch. 
c ‘original’ indicates that the original DenseNet is used. 
d ‘before’ indicates that multi-scale convolution is added before the dense block. 
e ‘within’ indicates that multi-scale convolution is added within the dense layer. 
f ‘before&within’ indicates that multi-scale convolution is added before the dense block and within the dense layer concurrently. 
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such a feature set, because the features with strong correlation are 
clustered together, the irrelevant features are weakened, and accord-
ingly the features output by such a method tend to have less redundant 
information. Using such a feature set to pass on to the next layer and 
finally as the input to the reverse calculation, the network will converge 
faster. When conducting the experiments, we took the AUC of the 
verification set of each training epoch as the standard, and would 
terminate the training when the AUC of the verification set dropped for 
ten consecutive times. From Table 3, we can see that by adding the 
multi-scale convolution before each dense block, the model indeed 
converged significantly faster when being trained on the four cell line 
datasets. Meanwhile, Fig. 4B visually shows, in line chart form, the 
number of epochs required to achieve optimal results for different 
structural networks on the four cell line datasets. Combining the data in 
Table 3 and Fig. 4, we conclude that on the four cell line datasets, multi- 
scale dense connection networks with different structures can all ach-
ieve excellent performance. Among them, when the multi-scale convo-
lution was added before the dense block and within the dense layer 
concurrently, the network with this structure can obtain the best per-
formance with significantly less epochs, which is the MSDenseNet 

proposed by us. 
Overall, the ablation experimental results showed that adding the 

multi-scale convolution within the dense layer could capture more fea-
tures and accordingly improve the predictive performance. Meanwhile, 
adding the multi-scale convolution before dense block could also reduce 
the number of training epochs. When the multi-scale convolution was 
added before the dense block and within the dense layer concurrently, 
such a network structure could not only achieve high predictive per-
formance, but also converge quickly. 

3.2. FTC is an effective new sequence encoding method and improves the 
performance 

In a previous study, Shen et al. [20] divided the 690 datasets into 
three different scale datasets, i.e. small datasets with the scale of less 
than 3000 samples, medium datasets with the scale between 3000 and 
30,000 samples, and large datasets with the scale of greater than 30,000 
samples. To investigate the effect of feature representation methods on 
model performance, we compared the predictive performance of models 
trained using raw DNA sequence and FTC on different scale datasets to 

Fig. 5. Effect of feature representations on the performance of MSDenseNet in terms of the AUC score across the datasets of different scales. (A) displays the AUC on 
small datasets of different feature representations. (B) displays the AUC on medium datasets of different feature representations. (C) displays the AUC on large 
datasets of different feature representations. (D) displays the AUC on all 690 ChIP-seq datasets of different feature representations. 
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examine the effectiveness of the proposed FTC encoding method. When 
the raw DNA sequence is used, each base in it will be denoted as one of 
the 4 one-hot vectors (i.e. A→ [1, 0, 0, 0], C→[0, 1, 0, 0], G→[0, 0, 1, 0], 
T→[0, 0, 0, 1]). 

In terms of the performance evaluation indicators, here we paid more 
attention to the AUC metric. In contrast, all other performance metrics 
will change with the change of the prediction cut-off threshold. There-
fore, the metric AUC that does not change with the threshold can reflect 
the comprehensive performance of the model. In terms of AUC, Fig. 5 
shows the effect of feature representations on the performance of 
MSDenseNet across datasets of different scales in the form of scatter 
diagram, where each of 690 testing subsets corresponds to a point whose 
X and Y coordinates indicate the AUC scores of the corresponding 
feature representation method. We can see that the majority of the 
points fell above the diagonal line, indicating that in different scale 
datasets, the AUC of MSDenseNet using FTC is higher than that using 
only the raw DNA sequence, which shows that our proposed feature 
representation method (FTC) can improve the model performance to a 
certain extent. From Table 4, we can see that in most cases, the average 
predictive performance of various metrics is improved by using FTC. It is 
worth mentioning that the various average performances on large 

datasets maintain very high values, and FTC brings significant im-
provements to the various average performances on small and medium 
datasets. 

3.3. Performance comparison between MSDenseNet and other existing 
methods 

The majority of existing prediction methods of DPB are developed 
based on the human ChIP-seq datasets from the ENCODE project. In 
particular, HOCNN [32], KEGRU [34], and DeepRAM [37] used 214, 
125, and 83 ChIP-seq datasets from the ENCODE project, respectively, to 
evaluate the performance of their respective methods. Herein, to enable 
an objective comparative analysis, we compared with gkm-SVM [54], 
DeepBind [16], CNN-Zeng [17], DeepTF [36], Expectation-Lou [18], 
HOCNN [32], SAResNet [20] and MAResNet [21] using all the 690 
ChIP-seq datasets, to ensure the integrity and fairness of the 
experiments. 

To test and compare with the performance of the gkm-SVM method, 
we downloaded the gkm-SVM R package (https://cran.r-project.org/ 
web/packages/gkmSVM) and replicated their experiments with the 
default parameters. The relevant experimental data of the two models, 
DeepBind and CNN-Zeng, were obtained from http://cnn.csail.mit.edu/. 
The authors of DeepTF provided its AUC results. The source code of 
Expectation-Luo was downloaded from https://github.com/gao-lab 
/ePooling, we used the default parameters to train and test each of the 
690 ChIP-seq datasets. According to the description of HOCNN by au-
thors, we reproduced their model with PyTorch and carried out exper-
iments on 690 ChIP-seq datasets. Furthermore, the authors of SAResNet 
and MAResNet published their experimental data. Fig. 6 shows the 
performance of MSDenseNet on 690 ChIP-seq datasets in comparison 
with gkm-SVM, DeepBind, CNN Zeng, DeepTF, Expectation-Luo, 
HOCNN, SAResNet and MAResNet. From Fig. 6, it can be seen that 
MSDenseNet outperformed all the other methods on the 690 datasets in 
terms of AUC. Moreover, the median AUC of MSDenseNet was 0.937, 
which was better than that of the suboptimal method MAResNet with 
the median AUC of 0.931. In addition, we can also see that MSDenseNet 

Table 4 
Performance comparison of the MSDenseNet trained with different feature 
representation methods with respect to different dataset scales.  

Dataset 
scale 

Encoding Accuracy Precision Recall F1 score AUC 

Small RAWa 0.724 0.729 0.714 0.721 0.886 
FTCb 0.791 0.792 0.788 0.789 0.897 

Medium RAW 0.833 0.847 0.814 0.830 0.918 
FTC 0.844 0.849 0.837 0.843 0.921 

Large RAW 0.924 0.935 0.910 0.922 0.973 
FTC 0.925 0.933 0.916 0.924 0.973 

All RAW 0.846 0.858 0.830 0.844 0.929 
FTC 0.860 0.866 0.853 0.859 0.933  

a RAW denotes that the raw DNA sequence is used as the input feature. 
b FTC denotes that the fault-tolerant coding is used as the input feature. 

Fig. 6. Boxplots of the AUCs achieved by different methods with 690 ChIP-seq datasets.  
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improved the AUC values in both the upper and lower quartiles averaged 
on all 690 datasets compared with the other methods (Fig. 6), high-
lighting the excellent generalization ability of MSDenseNet. 

We further evaluated the performance of each model on the datasets 
of different scales. The average AUC of each model on these three scale 
datasets is provided in Table 5. As can be seen, MSDenseNet achieved 
the best AUC score on all the datasets with different scales, which il-
lustrates the competitiveness and robustness of MSDenseNet. By a closer 
inspection at the last column of Table 5, we can see that MSDenseNet 
also achieved a statistically significant performance improvement in 
terms of AUC (student’s t-test, P < 2.0 × 10− 2) compared with other 
methods on 690 independent testing datasets. 

In addition, we presented the performance of MSDenseNet and other 
seven methods on all evaluation metrics on datasets of different scales in 
the form of bar charts. We noted that in Fig. 7A, the precision of gkm- 
SVM and HOCNN is relatively high, but their recall is very low. In this 
work, in order to fairly compare the performance of MSDenseNet with 
other models on datasets of different scales, we focus more on the 
comprehensive performance metric AUC which is not affected by the 
cut-off threshold. As shown in Fig. 7, we can more intuitively see that 
MSDenseNet outperforms other existing models on almost all evaluation 
metrics on datasets of various scales. Overall, these results demonstrate 
that our model improved the predictive performance across all datasets 
with different scales, which was more pronounced when tested on the 
small and medium datasets. 

Table 5 
Performance comparison of MSDenseNet and the other existing methods in 
terms of AUC on different scale datasets.  

Method All 
datasets 

Small 
datasets 

Medium 
datasets 

Large 
datasets 

P-valuea 

MSDenseNet 0.933 0.897 0.921 0.973 -b 

MAResNet 0.927 0.883 0.914 0.972 2.0 ×
10− 2 

SAResNet 0.920 0.876 0.907 0.966 8.4 ×
10− 7 

HOCNN 0.887 0.821 0.868 0.957 1.7 ×
10− 38 

Expectation- 
Luo 

0.881 0.835 0.859 0.947 4.7 ×
10− 52 

CNN-Zeng 0.875 0.818 0.850 0.953 6.2 ×
10− 54 

DeepTF 0.845 0.809 0.818 0.919 4.0 ×
10− 100 

DeepBind 0.830 0.785 0.809 0.896 2.0 ×
10− 64 

gkm-SVM 0.818 0.798 0.809 0.856 4.3 ×
10− 208  

a P-value of the student’s t-test was performed to evaluate the statistical dif-
ferences in the AUC values between MSDenseNet and the other prediction 
methods. 

b ‘-’ denotes that the relevant value was not applicable. 

Fig. 7. Performance comparison between MSDenseNet and other methods on the testing datasets with different scales. (A) displays the performance of each model on 
the small datasets. (B) displays the performance of each model on the medium datasets. (C) displays the performance of each model on the large datasets. (D) shows 
the performance of each model on all 690 ChIP-seq datasets. 
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4. Conclusions 

In this study, we have developed a novel deep learning method, 
termed MSDenseNet, which has improved sequence-based prediction of 
DPB. Evaluated by performing comprehensive and unbiased experi-
ments, MSDenseNet clearly outperformed a variety of existing state-of- 
the-art methods on the 690 ChIP-seq datasets. Notably, our proposed 
MSDenseNet method achieved significant performance improvements 
on the small and medium datasets. Three critical factors can be attrib-
uted to its success: First, we introduced a fault-tolerance mechanism 
during the feature representation stage, and applied the FTC encoding 
method to generate the feature matrix input to the deep network, which 
has been shown to be able to effectively improve the predictive per-
formance; Second, by adding the multi-scale convolution within the 
dense layer to extract the features of different scales, the extracted 
features were more abundant and informative. As such, the predictive 
performance of the resulting model could be further improved, and 
third, we leveraged a powerful neural network structure analogous to 
Inception before each dense block, and applied the principle of 
decomposing a sparse matrix into a dense matrix to accelerate the 
convergence of the model. 

Despite the outstanding performance of MSDenseNet for DPB pre-
diction, it has some limitations and there exist several aspects for further 
improvement: First, due to the restraints of time and computational 
resources, only the two-order FTC was used, which was shown to result 
in the model performance improvement. This implies that FTC per-
formed well in terms of feature enrichment. However, the potential and 
impact of higher-order FTC will need to be further examined in the 
future work; Second, MSDenseNet is only designed for the prediction of 
DPB. However, with a little modification, it can be used to solve other 
sequence-based prediction problems in bioinformatics and computa-
tional biology [55]. For example, by performing the corresponding 
transformations in the feature representation stage, binding sites can be 
predicted from protein sequences [56–58], and other types of binding 
and functional sites can also be predicted [59–61], and finally, we hope 
to develop a suite of useful bioinformatics tools based on the MSDen-
seNet methodology, which should prove useful and valuable for iden-
tifying functional elements of gene regulation from the genomic 
sequence regions. 

Data and software availability 

The 690 ChIP-seq datasets [17] used in benchmarking experiments 
can be downloaded at http://cnn.csail.mit.edu/motif_discovery/. Four 
different cell line datasets [21] (i.e. A549, H1-hESC, HUVEC and MCF-7) 
and the global datasets [20] used in pre-training are publicly available at 
http://csbio.njust.edu.cn/bioinf/maresnet/. 

We implemented MSDenseNet using PyTorch (v1.8.1), https://pyt 
orch.org/. The source code of MSDenseNet has been released at https: 
//github.com/csbio-njust-edu/msdensenet. In addition, we have built 
an online webserver of MSDenseNet at http://csbio.njust.edu.cn/bioin 
f/msdensenet. 
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