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A B S T R A C T

Rail-guided vehicle is a logistics management device widely used to perform various material handling
operations instead of manual labor. In processing scenarios, the dimensions of the material transfer path of a
rail-guided vehicle are typically very large, which makes the optimization of the material transfer path very
difficult. The transdifferentiation behavior of lower organisms was introduced into the evolutionary algorithm,
and a large-scale differential evolution algorithm based on the transdifferentiation strategy was proposed, for
achieving high-efficiency processing. This strategy makes it possible for some individuals with poor fitness to
reach maturity again and be selected for the next iteration after losing some information and returning to
their juvenile stage, which helps maintain the diversity of the population. Simulation results show that the
proposed algorithm not only achieves an average 25.68% higher output rate than the comparison algorithms
on the test cases but also has an excellent and stable effect distribution level on the extended problem space,
which shows that the superiority of the proposed algorithm is not affected by the processing parameters.
This research is expected to provide technical guidance for the processing of key components in the ship and
aviation manufacturing industries. The code with a 31-page manual is available on our project homepage
https://github.com/MLNST-JUST/DE-TS.
. Introduction

At present, the rapid development of artificial intelligence has
layed a significant role in the growth of the world economy. At
he same time, it has also achieved breakthrough research results
n many fields such as face recognition (Shao et al., 2018), DNA–
rotein binding recognition (Yin et al., 2022), and early warning of
as concentration (Cai et al., 2021). It also provides effective solutions
or many major engineering problems. The metaheuristic algorithm is

type of artificial intelligence algorithm with extensive applicability
Loubière et al., 2018; Muhammad et al., 2018). As an important part
f the field of computational intelligence, it has achieved outstanding
erformance in many tasks such as servo system control (Pozna et al.,
022; Precup et al., 2021; Zamfirache et al., 2022), polynomial control
esign (Madiouni et al., 2019), and time series forecasting (Abdulkarim
nd Engelbrecht, 2021). At present, metaheuristic algorithms have been
ffectively applied in many major projects and have been applied to
ey processes such as mechanical control, logistics control, processing
ontrol, and other key processes.

With the rapid development in the fields of digital twin and mecha-
ronics, integration (Ogunsina and DeLaurentis, 2022), unmanned
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(Bhaskara et al., 2021), and intelligence (Mohamadi et al., 2022;
Zhang et al., 2022) have become the main development directions of
production and processing systems. To achieve this goal, rail-guided
vehicle (RGV) is widely used in various production and processing
systems such as aviation safety (Kim et al., 2018), parts processing
(Wang et al., 2014), magnetic levitation control (Cho and Kim, 2014),
and intelligent storage (Kou et al., 2018), which helps to replace
human execution of material loading and unloading, material handling,
material cleaning, and other material handling operations. Meanwhile,
This also helps to achieve finer control of the material flow state (Zhang
and Wang, 2019). This not only reduces the instability of the material
flow process but provides a base for the further development of digital
twin technology as well (Lee et al., 2021).

In recent years, the use of RGV equipment for integrated schedul-
ing control of high-precision computer number controllers (CNC) has
become very common (Fan et al., 2019; Zhang and Wang, 2019). In
this operation scenario, the RGV equipment performs integrated control
on the CNC, so that the CNC can stably and efficiently complete the
scheduled processing tasks under appropriate material supply condi-
tions. This practical problem can be called the RGV dynamic scheduling
problem (RDSP). Unlike the classic workshop scheduling problems such
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as job-shop scheduling problem (JSP) (Applegate and Cook, 1991),
dynamic job-shop scheduling problem (DJSP) (Jain and Meeran, 1999),
flexible job-shop scheduling problem (FJSP) (Pezzella et al., 2008),
dynamic flexible job-shop scheduling problem (DFJSP) (Zhang et al.,
2021a,b) and distributed job-shop scheduling problem (DSSP) (Wang
and Peng, 2020), the RDSP not only requires finding a feasible and
efficient processing sequence for each processing equipment but also
needs to consider thoroughly how to use RGV equipment for real-time
material supply. This research helps keep the material flow capability
of the processing system matched to its processing capacity. In general,
the research on the RDSP additionally considers the material supply and
circulation process and transforms the workshop processing problem
into the RGV scheduling control problem, which is more closely related
to the real processing scene.

At present, many important works have emerged on the RDSP. In
the workshop scene of RGV, Fan et al. (2019) designed an improved
genetic algorithm for solving the RDSP (IGAR) based on the cyclic per-
turbation coding method — its algorithm performance is significantly
better than the traditional genetic algorithm. Dotoli and Fanti (2005)
constructed a colored Petri net model in the RGV workshop. Martina
et al. (2018) studied the relationship between the throughput of the
processing system and the number of RGVs in the system and pointed
out the nonlinear relationship between the two. Lee et al. (1996)
adopted the first in first out (FIFO) strategy and designed a method to
determine the optimal number of RGV installations in the application
scenario of a warehouse circular transportation system. Xiao (2019)
added the Kraskar selection operator to the greedy algorithm and
designed a dynamic scheduling simulation model for RGV material
processing, which provided a feasible solution for the path selection
between CNCs. Wang et al. (2018) proposed a dynamic scheduling
simulation model based on the greedy strategy, which realized the local
scheduling strategy optimization of RGV. To improve the objectivity
and accuracy of the multi-objective weight calculation in the intelligent
processing system model, Li (2019) used the entropy weight method
and the expert sorting method to calculate two sets of weights, and
established a feasible intelligent scheduling model for RDSP. Ding et al.
(2020) designed a forward-looking step-by-step model for optimizing
the RGV scheduling scheme, introduced a chaotic particle swarm op-
timization algorithm into the model, and proposed a hybrid method
integrating a multi-step processing mechanism and evolutionary algo-
rithm. All of which have made a significant contribution to the research
and the development of the RDSP.

In our past work, we carried out a comparative analysis of the
metaheuristic algorithms for solving optimization problems (Muham-
mad et al., 2018), and discussed the application of the proposed hybrid
algorithm combining ant colony optimization algorithm with genetic
algorithm (Shang et al., 2007a), and the application of the wading
across stream algorithm (Gao et al., 2014) on the issue of the traveling
salesman problem. In these tasks, we have tested the performance of
the metaheuristic algorithms in path searching. We also discussed the
application of the proposed improved ant algorithm (Shang, 2008)
and Immune genetic algorithm (Shang et al., 2007b) on the weapon–
target assignment problem to test the performance of the metaheuristic
algorithms in the target matching. Further, based on cost effectiveness
analysis, we have designed a system reliability optimization model,
mainly including the selection of components and system architecture.
In this paper, we mainly studied the RGV scheduling control and
CNC processing arrangements under the RDSP. Based on the above
discussion, it is not difficult to find that when solving the RDSP, preset
rule methods such as the FIFO scheduling strategy or heuristic search
method are generally used, or a combination of the two. Since the
continuous processing time in the RGV workshop is often very long,
the RDSP series of problems are tremendous — the dimension of the
decision vector may exceed 50,000. Therefore, the solution to the RDSP
is very difficult to search for directly. To this end, this paper proposes a
differential evolution algorithm based on the transdifferentiation strat-

egy (DE-TS). The algorithm includes an RGV material transfer sequence
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generation mechanism based on a debilitating factor, to accelerate
the convergence speed in the early stage of the algorithm without
compressing the solution space. At the same time, a novel transdifferen-
tiation strategy acts on the evolution process of the population, which
enables the population diversity to be effectively maintained. The main
contribution of this work is as follows:

(1) On the RDSP, the larger problem scale makes the optimization
of the population particularly slow. An effective solution is to achieve
dimension reduction operations by setting a loop in each individual
in the population. For example, each CNC is required to be accessed
only once in the cycle, which is an effective way to rapidly improve
the production efficiency of the processing system (Fan et al., 2019).
However, on the one hand, such a process of treatment has abandoned a
large part of the solution space, which makes many efficient processing
strategies may be directly excluded from the search area. On the other
hand, although each CNC has the same number of processing times
when the processing time of processing required for different processes
is large, it may lead to a large processing load gap between different
CNCs. This also reduces the upper limit of processing efficiency to
a certain extent. To the contradiction between search efficiency and
CNC load, the optimal operation of offspring individuals based on
debilitating factor was designed. During the iterative process, each
individual has a certain probability to set a processing cycle. At this
time, the proposed algorithm is distributed according to the generated
probability, and the corresponding cycle length is selected for each
individual. In the cycle, according to the processing requirements of
the current material, the number of allowable access to each CNC will
be determined in real-time, so that the difference in the processing load
between different CNCs is as small as possible.

(2) Collaborative evolutionary optimization is an evolutionary strat-
egy based on the idea of divide and conquer. To improve the perfor-
mance in solution searching, the coordinated evolution strategy was
introduced in the proposed algorithm. During each iteration, the gen-
erated offspring population will be divided into three sub-population
according to their fitness from high to low: the surviving population,
the injured population, and the eliminated population. On the one
hand, the surviving population is responsible for maintaining the supe-
riority of individuals, and those individuals included in it will be sent
unconditionally into the next iteration. On the other hand, the injured
population is responsible for maintaining the diversity of populations.
Each individual in it is partly ‘‘damaged’’ according to its fitness, and
its decision variable is partly lost according to the degree of damage.
Then it is supplemented by the sampling method. This strategy enables
the proposed algorithm to better balance the superiority of individuals
and the diversity of the population.

(3) In order to balance CNCs’ material processing capabilities and
RGV’s logistics management capacity, a learning mechanism is de-
signed in the proposed algorithm, which enables individuals to have
the ability to learn the distribution information of CNC processing tools
from the parent population. This study also gives a calculation method
for the mathematical expectation dimension of the RGV material trans-
fer sequence, to prevent potential problems caused by the mismatch
between the preset sequence length — on the one hand, the algorithm
will terminate prematurely when the sequence is too short. On the other
hand, computing resources will be wasted when the sequence is too
long. In addition, this research provides the source code for the RDSP
series of test problems and the DE-TS algorithm. The source code and
its guidance manual of this study are available now on github.

In Section 2, we introduce the test problems used in the experiments
and the performance metrics used to measure the obtained solutions.
Subsequently, the main framework and details of the DE-TS algorithm
are introduced in detail in Section 3. Section 4 describes the experi-
mental setup and comparative results. Finally, conclusions are drawn

and future work is outlined in Section 5.
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Fig. 1. Schematic diagram of the processing system. Among them, the RGV and its track are in the middle. The loading conveyor belt and the unloading conveyor belt are located
n both sides of the RGV track. CNCs are evenly distributed on both sides of the RGV track.
. RDSP and its evaluation indicator

.1. Processing system composition

In the RDSP, the production workshop may contain multiple sub-
rocessing systems, each sub-processing system consists of an RGV and
ts moving track, a set of feeding conveyor belt, a set of unloading
onveyor belt, multiple CNCs and their related accessories. Among
hem, the RGV is composed of mechanical grippers, a clinker cleaning
ank, double-headed mechanical arms and other components, which
an accurately perform material processing operations such as move-
ent, loading and unloading, material handling, and finished material

leaning according to system instructions. On the one hand, the loading
onveyor belt is used to ensure that no matter where the RGV stops,
here is raw material available. On the other hand, the unloading
onveyor belt is used to ensure that no matter where the RGV stops,
he finished material can be placed onto it. Then, the finished material
ill be sent off the processing system automatically. The CNCs in the
rocessing system are evenly distributed on both sides of the RGV track.
enerally, the number of CNCs in each sub-processing system is not less

han 8. Depending on the type of tool installed, the CNC can perform
he corresponding machining operation on the material. At the same
ime, each CNC can only perform preset processing operation on one
aterial. Fig. 1 shows a schematic diagram of a machining system with
CNCs. It should be noted that the number of CNCs may be different

n different machining systems.

.2. Material processing flow

In the processing system, RGV needs to provide a stable supply of
aterials for each CNC, put the processed materials into the clinker

leaning tank for cleaning, and finally put them on the unloading
onveyor belt to send them off. At the same time, the CNC needs to
erform corresponding processing operations on the materials placed
y the RGV on its processing table according to the type of tools
nstalled.

Fig. 2 shows the general material processing flow. Firstly, the RGV
eeds to move in front of a Class I CNC for the first process, and
rab a piece of raw material on the feeding conveyor belt with the
-side gripper of the double-headed robotic arm. Then, the double-

◦
eaded robotic arm will turn 180 , and use the vacant B-side gripper

3

to grab the semi-clinker that has been processed on the Class I CNC
machining table. In the next step, the double-headed robotic arm will
turn 180◦ again, and the material gripped by the A-side gripper will
be automatically placed on the processing table. Next, the RGV will
move to a Class II CNC for the second process, and use the A-side
mechanical gripper to hold the processed clinker on the processing
table, and immediately turn it over 180◦, and then turn the B-side
mechanical claw. The semi-clinker gripped by the claws is placed on it.
Immediately afterward, the double-headed manipulator arm will turn
180◦ again, and the clinker held by the mechanical claw on the A-
side will be placed in the clinker cleaning tank for cleaning. Finally,
the finished material will be placed on the unloading conveyor belt
by the RGV to leave the processing system. In Fig. 2, raw material,
semi-clinker, clinker and finished material are marked with blue, green,
orange and red respectively to distinguish.

Noticeably, in those steps marked in orange in Fig. 2, after the
material is placed on the CNC machining table, the CNC will automat-
ically perform the machining operation. The machining operation of
CNC is asynchronous with the material transfer operation of RGV. In a
nutshell, RGV can leave after completing the feeding operation without
waiting for the current CNC to complete the machining operation. It
should be noted that some of the steps included in Fig. 2 can be skipped
under certain circumstances. For example, when the machining system
is first started, all CNC machining tables are empty. When there is
no material to be unloaded on the CNC accessed by RGV, RGV will
perform the loading operation normally after skipping the unloading
operation. At this time, if the currently accessed CNC is type II CNC,
the material cleaning step will also be skipped together. In addition,
when the machining system is about to stop, all CNC machining tables
are gradually emptied. At this time, the RGV will skip the next feeding
operation after the normal unloading operation.

2.3. Definition of the optimization problem

In different processing scenarios, the maximum material output
value of the RDSP is inconsistent. On the one hand, some studies on
the RDSP directly use the output of finished materials as a comparison
index (Ding et al., 2020; Fan et al., 2019), which effectively realizes
the longitudinal comparison between different algorithms in the same
scenario. However, under different processing parameters, such as the
number of CNCs or the material transferring time of RGV, it is hard to
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chieve a horizontal comparison of the same algorithm in different sce-
arios. For example, an algorithm achieves 𝐿1 and 𝐿2 finished material

output in Scenario 1 and Scenario 2, respectively. However, these data
cannot be used to compare the pros and cons of this algorithm in these
two scenarios in that the finished material output does not rule out
the influence of different processing parameters on the problem itself.
On the other hand, some studies use the total idle time of all CNCs as
an evaluation index (Wang et al., 2019). In this way, the utilization
rate of the system can be obtained by dividing the total idle time of
CNCs by the total processing time. This evaluation indicator provides
a solution to horizontal comparison in different scenarios. However,
since the load capacity of CNC is greatly affected by the parameters
in specific processing scenarios, the system parameters in different
processing scenarios may be quite different. In order to enhance the
fairness of the experiment, this study designs the loss as an evaluation
indicator to evaluate the algorithm performance on the RDSP problem
as fairly as possible.

Assuming that all CNCs in the processing system are continuously
performing the work cycle of ‘‘unloading and processing materials’’, all
CNCs are in an ideal state of full load at this time. Then, the upper limit
of the system output 𝐿max is:

𝐿max = min(
∑

𝑖∈𝑃

⌊

𝑇
𝑡ℎ𝑖 + 𝑡𝑙𝑖

⌋

,
∑

𝑖∈𝑄

⌊

𝑇
𝑡ℎ𝑖 + 𝑡𝑙𝑖

⌋

). (1)

Among (1), T represents the continuous operation time of the
rocessing system, 𝑡ℎ𝑖 represents the time required for the CNC i to

complete one machining operation, and 𝑡𝑙𝑖 represents the time required
for the RGV to complete a loading and unloading operation for the CNC
i. Since the loading and unloading operation time is affected by the CNC
position, the time spent by the CNC on the loading conveyor belt side
and the unloading conveyor side belt in this step is slightly different.
The CNC equipped with the tools required for the first machining
process is called the class I CNC, and the set of all the class I CNCs is
P; The CNC equipped with the tools required for the second machining
 t
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process is called the class II CNC, and the set of all the class II CNCs is
Q, then there are:
{

𝑈CNC = {𝑃 ,𝑄}

𝑠.𝑡. 𝑃 ∪𝑄 = ∅.
(2)

Among (2), 𝑈CNC represents the universal set of all CNCs. The
intersection of P and Q is an empty set, indicating that each CNC can
nly install a type of processing tool during a processing process. At
his time, the upper limit of the system is limited by the processing
apacity of different types of CNC. After obtaining the upper limit of
he system output Lmax, the result of the optimization problem can be
alculated by (3). During a processing process, assuming the number
f finished materials produced under the scheduling scheme generated
y an algorithm is Lreal, saying that loss is the processing efficiency loss
f the processing system, the optimization problem can be defined as:

min 𝑙𝑜𝑠𝑠(𝐷𝑉 ) = 1 − 𝐹 (𝐷𝑉 )

𝑠.𝑡. 𝐹 (𝐷𝑉 ) =
𝐿real
𝐿max

× 100%

𝐷𝑉 = {𝐷𝑉CNC, 𝐷𝑉RGV}

𝐿real = 𝐺(𝐷𝑉CNC, 𝐷𝑉RGV)

𝐷𝑉CNC(𝑖) =

{

0, CNC𝑖 ∈ 𝑃

1, CNC𝑖 ∈ 𝑄
, 𝑖 = 1, 2,… , 𝑁CNC

𝐷𝑉RGV(𝑗) = 100 ∗ 𝑇𝑁I(𝑗) + 𝑇𝑁II(𝑗),

𝑗 = 1, 2,… , 𝐸(𝐷) −𝑁CNC

𝑇𝑁I(𝑘) ∈ 𝑃 , 𝑘 = 1, 2,… , 𝐸(𝐷) −𝑁CNC

𝑇𝑁II(𝑙) ∈ 𝑄, 𝑙 = 1, 2,… , 𝐸(𝐷) −𝑁CNC.

(3)

Among (3), F represents the output rate, and its value corresponds
o the individual’s fitness level. DV is the decision variable, which is
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composed of the decision variable 𝐷𝑉 CNC in the CNC encoding part,
nd the decision variable 𝐷𝑉 RGV in the RGV encoding part. In addition,
is the calculation function of the actual number of finished materials

roduced. Lreal = G(𝐷𝑉 CNC, 𝐷𝑉 RGV) indicates that the tool installation
s performed according to 𝐷𝑉 CNC, and the material transfer control
s performed according to 𝐷𝑉 RGV, and the actual number of finished
aterials that are produced is Lreal. On the one hand, the 𝐷𝑉 CNC section

s encoded by 0 and 1, and its length is consistent with the number of
NCs in the processing system. Each value in 𝐷𝑉 CNC corresponds to
he type of a CNC. On the other hand, 𝐷𝑉 RGV uses four digits to store
he transfer path of each material. 𝐷𝑉 RGV (j) is used to indicate the
ransfer path of the 𝑗th material. The first two digits 𝑇𝑁 I and the latter
wo digits 𝑇𝑁 II are used to indicate the number of type I CNC and type
I CNC accessed by the material. The length of the decision variable in
his part is E(D) − 𝑁CNC. E(D) is the length of the decision variable
V, indicating the mathematical expectation value of the individual
imension D. Its calculation method will be introduced in detail in
he (4) in 3.2 section. It can be seen that the tool distribution of the
rocessing system and various processing parameters jointly determine
he upper limit of the system output Lmax of the production workshop,
nd the decision vectors generated by different algorithms determine
he minimum loss that the processing system can achieve under the
imitation of the upper limit of Lmax. The lower the loss value of the
ystem, the better the corresponding algorithm.

. The proposed algorithm

.1. The structure of the proposed algorithm

Fig. 3 shows the structure of the DE-TS and its differences from the
E (Differential Evolution) (Storn and Price, 1997). Among them, the
ore steps of the DE are marked with a gray area, which mainly includes
hree parts: mutant operation, cross operation and selection operation.
he blue area shows the strategy introduced by the DE-TS algorithm.
uring the execution of the proposed algorithm, after performing the
utation and cross operation of DE, the original selection operation
ill no longer be performed, and it is replaced by the individual
ptimization and transdifferentiation strategy in DE-TS. At this time,
ach individual will perform an optimal operation based on debilitating
actor, so that the distribution of decision variables of the offspring
opulation is more matched with the needs of real processing scenarios.
ubsequently, the optimized offspring population will merge with the
arent population. The merging population will be sorted according
o the fitness, and from high to low, it is divided into the surviving
opulation, the injured population, and the eliminated population.
t this time, the injured population will lose a part of its decision
ariable based on its fitness. The lost part will be made up by executing
he transdifferentiation strategy. Then, the injured population will be
erged with the surviving population into the next iteration. The detail

f it will be introduced in the subsequent part of this chapter. Every
ime the loss is calculated, the number of evaluations FE is added with
. When FE reaches the maxFE, the algorithm ends.

.2. Population initialization

When solving this problem, the first step is to assign appropriate
achining tools to all CNCs, and the next step is to generate a suitable
aterial transfer path for the RGV. Affected by the number of CNCs

nd the continuous processing time, the material transfer path of RGV
ay be very long — its length is generally between 30,000 and 50,000
imensions, which adds an obstacle to the optimization of the prob-
em. During the population initialization, the initial population will be
andomly generated in the effective solution space.

Each individual can be represented by a one-dimensional vector,
s Fig. 4 shows an example of coding for an individual. On the one

and, when there are 𝑁𝐶𝑁𝐶 CNCs in the machining system, the front

5

Fig. 3. The structural diagram of the DE-TS. The strategy introduced by the proposed
algorithm based on the DE is marked in the blue area. The FE and maxFE in this
figure refer to the current number of function evaluations and the maximum number
of function evaluations, respectively.

𝑁𝐶𝑁𝐶 dimension of the decision vector is used to store the CNC tool
information - 1 represents class I CNC, and 0 represents class II CNC. On
the other hand, the remainder of the decision vector is used to store the
material transfer path of the RGV, with a 4-digit number per dimension
to store one complete machining as shown in Fig. 2.

Among them, the first two digits and the last two digits represent the
relative numbers of the type I CNC and the type II CNC visited in this
machining process, respectively. The relative number is obtained by
classifying the original CNC number according to the tool category, and
then renumbering it from small to large within each category. Using
relative numbers instead of absolute numbers can facilitate the repair
of out-of-bounds individuals. For instance, there are only 7 CNCs of
class I in a machining system. However, when the algorithm repairs
the material transfer path of the RGV of a certain individual I, it finds
a class I CNC with a relative number greater than 7. In this case, it
can be swiftly and briskly determined that the current individual I is
out of bounds. Subsequently, the out-of-bounds part of I will be quickly
mapped back into the effective solution space.

Compared to absolute numbering, relative numbering avoids a large
number of query operations required to fix the individual and speeds up
processing. In a population, all individuals have the same dimension.
The expectation of the individual dimension can be calculated by (4):

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝐸(𝐷) = 𝑛CNC + max(𝐷I, 𝐷II)

𝑠.𝑡. 𝐷I =

⌊

𝑇
𝑡(I)ℎ

⌋⌈

𝑡(I)ℎ 𝑛CNC

𝑡(I)ℎ + 𝑡(II)ℎ

⌉

𝐷II =

⌊

𝑇
𝑡(II)ℎ

⌋⌈

𝑡(II)ℎ 𝑛CNC

𝑡(I)ℎ + 𝑡(II)ℎ

⌉

.

(4)

Among (4), E(D) is the expected value of the individual dimension
D, max(𝐷 , 𝐷 ) is the upper limit value of the material transfer path
I II
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Fig. 4. The individual coding graph consists of two parts. The former is the CNC class code, and the latter is the RGV material transfer path code.
Fig. 5. Probability distribution map of NL when 𝜇 = 0.8.

dimension of the RGV, 𝐷I and 𝐷II are the upper limit values of the
dimension considering only the first process or the second process,
respectively. 𝑡ℎ(I) and 𝑡ℎ(II) are the time required to complete a material
rocessing for class I CNC and class II CNC, and these values may vary
ith processing requirements. Taking process one as an example, The

esults of rounding down T/𝑡ℎ(I) represents the maximum number of
epeated machining times of class I CNC under ideal conditions within
he continuous operation duration T.

3.3. Generation of offspring

After the population is initialized, the parent generation will repro-
duce by the standard DE algorithm (Storn and Price, 1997), and the
generated offspring are still in their juvenile stage. After the out-of-
bounds solution is automatically repaired, each offspring will gradually
develop from the initial juvenile stage and enter the maturity stage.
Since RDSP is a large-scale problem, in order to speed up the conver-
gence speed in the early stage of algorithm operation, this paper gives
the concept of the atomic work cycle, and calculates a suitable cycle
length for each offspring — this cycle length is an integer multiple of
the atomic work cycle, and this multiple is called cycle number NL. NL
is determined according to the parameter of the debilitating factor 𝜇.
The weight in the case of NL = 1 is assigned a value of 1. Subsequently,
each time NL is increased by one, and its weight is multiplied by 𝜇.
Finally, assign probabilities to different values by weight. Fig. 5 shows
the probability distribution map of NL when 𝜇 = 0.8.

In the machining system, the RGV will visit a class I CNC and a
lass II CNC, in turn, before it completes one machining process each
ime. Therefore, although the machining time and the number may be
issimilar for different classes of CNC, the total number of visits is the
ame for each class of CNC. This imbalance is further exacerbated if
ach CNC is required to be visited the same number of times during an
tomic duty cycle. To deal with this contradiction, this paper defines
he atomic work cycle as a sequence of length 2𝑇 𝑜𝑜𝑙(I)⋅𝑇 𝑜𝑜𝑙(II), where
𝑇 𝑜𝑜𝑙(I) and 𝑇 𝑜𝑜𝑙(II) are the number of CNCs installed with class I
machining tools and class II machining tools, respectively. In an atomic
work cycle, each class I CNC is visited 𝑇 𝑜𝑜𝑙(II) times, and each type
II CNC is visited 𝑇 𝑜𝑜𝑙(I) times, for a total of 2𝑇 𝑜𝑜𝑙(I)⋅𝑇 𝑜𝑜𝑙(II) times. At
this time, it is not only guaranteed that the total number of visits of
each class of CNC is the same, but also that the load of the same class
of CNC is close to the same. In each atomic work cycle, 𝑇 𝑜𝑜𝑙(I)⋅𝑇 𝑜𝑜𝑙(II)

processing can be completed and the corresponding amount of finished
material can be produced.
6

For a certain individual I, after the value of 𝑁𝐿𝐼 is determined,
the appropriate cycle length can be determined for I according to the
definition of the atomic work cycle. At this time, the first 2𝑁𝐿𝐼 ⋅𝑇 𝑜𝑜𝑙(I)⋅
𝑇 𝑜𝑜𝑙(II) bits of the RGV material transfer path of the current individual I
will be extracted, and the repair operation will be performed in random
order. This operation allows each class I CNC to be visited 𝑁𝐿𝐼 ⋅𝑇 𝑜𝑜𝑙(II)

times, while each class II CNC is visited 𝑁𝐿𝐼 ⋅𝑇 𝑜𝑜𝑙(I) times. If the length
of the final generated loop is insufficient, the loop is repeated until
the dimension requirement is met. In fact, if the process is directly
disassembled into fixed-length loops, the convergence speed of the
algorithm in the early stage will be accelerated to a certain extent.
However, this also greatly compresses the solution space, potentially
discarding the optimal solution. At this time, it is more effective to
decide whether to execute the cycle processing according to the length
of the RGV material transfer path after selecting the value of 𝑁𝐿𝐼 and
the weakening factor 𝜇. Successively, it can prevent the solution space
from being greatly reduced and speed up the convergence speed of the
algorithm to a certain extent.

Specifically, after the offspring population is generated according to
the DE, each individual performs an individual optimization according
to the pseudocode shown in Algorithm 1. The following is further
described with reference to the line number given in Algorithm 1.
First, the decoding operation is performed on the individual I to be
optimized, to obtain the CNC tool installation list ToolList and the RGV
material transfer path 𝑅𝐼 . This step corresponds to the first line in
Algorithm 1. Next, the ToolList of the individual I will be automatically
repaired to prevent the number of tools required for machining in
different processes from being too unbalanced. This step corresponds to
the second line in Algorithm 1. Subsequently, the length 𝐴𝑊 𝐶 of one
𝐼
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atomic work cycle of I will be automatically calculated, and the initial
RGV material transfer path 𝐼𝑅𝐼 of I will be composed of 𝑁𝐿𝐼 atomic
work cycles, where 𝑁𝐿𝐼 is obtained by probability based on a given
ebilitating factor. This part is corresponding to lines 3–7 in Algorithm
. Calculation related to the debilitating factor has been introduced in
he previous two paragraphs. Subsequently, as shown in the 8th line
f Algorithm 1, fix the initial RGV material transfer path 𝐼𝑅𝐼 in a

random order, so that the load of different types of CNC is as close as
possible. When the dimension of the 𝐼𝑅𝐼 is longer than the expected
encoding length, only the first E(D)−N𝐶𝑁𝐶 bits are truncated as the
RGV material transfer path 𝑅𝐼 . Otherwise, a circular stuffing operation
is performed on it, resulting in an 𝑅𝐼 of dimension E(D)−N𝐶𝑁𝐶 bits.
This part corresponds to lines 9–14 in Algorithm 1. According to line
15 in Algorithm 1, ToolList and 𝑅𝐼 will be re-encoded to form the
optimized individual I.

3.4. Population update based on the transdifferentiation strategy

In the standard DE algorithm (Storn and Price, 1997), the offspring
population generated in each iteration will be mixed with the parent
population. Then, the mixed population will select individuals to enter
the next iteration according to the greedy strategy. In nature, when-
ever individuals face a variety of dangers such as natural disasters,
predation dangers, etc., the situation is not always polarized — some
individuals die instantly while others remain unscathed; in reality,
many individuals do not die despite being seriously injured. Next, these
individuals will begin to heal themselves—especially lower creatures
(Wang et al., 2021). Among them, some organisms will retreat from the
maturity stage to the juvenile stage in the process of self-healing after
being severely injured, such as the turritopsis nutricula (Piraino et al.,
1996). This phenomenon is called transdifferentiation (Eguchi and
Kodama, 1993). Many studies have reported that the introduction of the
population cooperation mechanism into evolutionary algorithms can
effectively improve the algorithm effect (Blot and Petke, 2021; Chen
et al., 2021; Siddique et al., 2021; Tang et al., 2021). In the proposed
DE-TS algorithm, some individuals involved in the transdifferentiation
process undertake the task of maintaining population diversity. At the
same time, some individuals with the highest fitness undertake the task
of maintaining the fitness level of the population. These populations can
effectively improve the algorithm effect through cooperation.

The proposed algorithm treats each iteration as a natural selection
for population update operations in the mixed parent and offspring
populations. When natural selection occurs, half of the population with
lower fitness die initially—those individuals who have been harmed
7

beyond the limit of their ability to heal themselves. Among the sur-
viving individuals, some of them with higher fitness have suffered
less damage, while the remaining individuals have suffered greater
trauma in the disaster, but are still within the ability to recover — the
proportion of this part of the population is related to environmental
stress 𝛼. At this point, these individuals will immediately enter the
transdifferentiation stage, and in the process of self-healing, return from
the maturity stage to the juvenile stage.

The pseudocode of the transdifferentiation strategy is shown in
Algorithm 2. First of all, each individual will be executed a decoding
operation to obtain its CNC tool installation list Toolist and RGV
material transfer path RI, as shown in the first line of Algorithm 2.
Contrary to the previous description of the individual entering the
maturity stage, only the core information is retained during the process
of the individual returning from the maturity stage to the juvenile
stage, and other contents will be lost. Specifically, these individuals
only retain information on their tool mounting ratios. In other words,
the sorting of the internal elements of the CNC tool installation list
Toolist will be disrupted, and the original RGV material transfer path
RI will be abandoned. The work of this part is shown in lines 2–3 in
Algorithm 2. Before the next iteration, these individuals will experience
rebirth from juvenile to maturity, and the lost RGV material transfer
path information will be regenerated by the method of one atomic
work cycle described above. This part is corresponding to lines 4–5 in
Algorithm 2. Next, the RGV material transfer path will be repeatedly
made up, so that its dimension is equal to E(D)−𝑁CNC. The result
will be performed by Toollist to perform coding operation, to obtain
individual I after the execution of the transdifferentiation strategy, such
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Fig. 6. The relationship between the control module and the optimization module. Among them, the control module and optimization module are identified with blue and green
respectively.
as the 6–12 lines of Algorithm 2. Finally, these individuals will be
placed in the parent population in the next iteration.

3.5. Analysis of DE-TS

The pseudocode of the DE-TS algorithm proposed in this paper is
shown in Algorithm 3. Firstly, the population is randomly initialized,
and the number of function evaluation FE is set to 0 at this time.

his part is corresponding to lines 1–3 in Algorithm 3. Secondly, the
opulation starts iterative optimization. In each iteration, a new round
f offspring population is obtained by the standard DE. Afterward,
he population is optimized once according to the offspring individual
ptimization method described in Algorithm 1. This part is corre-
ponding to lines 4–6 in Algorithm 3. Next, the population will be
nternally sorted in a fit manner and divided into three parts under
he influence of environmental pressure 𝛼: those with the lowest fitness

are abandoned, while those with the highest fitness go directly to the
next iteration, and the remaining individuals are saved to the parent
population in the next iteration after executing the transdifferentiation
strategy. For any individual, its fitness is defined as the value of 1 − loss.
This part is corresponding to lines 7–8 in Algorithm 3. The popula-
tion split operation is corresponding to lines 9–18 in Algorithm 3. At
this time, each individual will perform the corresponding operation
according to the order in its population. The 19th line of Algorithm
3 describes the process of assignment of the parent population in the
next iteration. The WHILE loop as shown in lines 4–20 in Algorithm 3
will be repeatedly executed until the end conditions are met. When the
number of function evaluations reaches maxFE, the algorithm will end
the iteration and display the best individual, as shown in lines 20–21
in Algorithm 3.
8

Fig. 6 shows how the control module and the optimization module
affect each other. Among them, the arrows in each module are used
to illustrate the execution order, and the arrows between different
modules show how to interact. First of all, the optimization module
will obtain the processing system information from the control module,
including the number of CNCs in the processing system, and the maxi-
mum continuous processing time of the system, which is used to build
a digital twin workshop. Subsequently, the optimization module will
obtain material processing requirements information from the control
module, including information such as the time of different process
stages of the required processing materials. The optimization module
will determine the dimension of decision variables and their upper and
lower limitation based on the above information, and complete the
initialization of the population on this basis. At this time, the optimized
module uses the proposed algorithm for optimization operations to
return the best individual in the final population as the optimization
result. The optimization results obtained will be automatically decoded
into CNC code and RGV code. The control module will first obtain
the CNC code from the optimization module, which will be used to
guide multiple CNCs in the workshop to complete the allocation and
installation of the tools. Each CNC will be determined to be responsible
for a process and install the processing tool required for it. After the
installation is completed, the control module will obtain RGV code from
the optimization module, which is used to form a material transfer path
for RGV. After the above operations, the machining system is turned on,
and the RGV can access all the CNCs in the processing system according
to the obtained RGV material transfer path, and automatically place
the material to be processed on the processing table of the accessible
CNC. For any CNC, whenever a material to be processed is placed
on its processing table, the CNC will automatically start processing
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Table 1
Parameter settings of all algorithms.

Algorithm Parameter

IGAR (Fan et al., 2019) 𝐶𝑅min = 0.75, 𝐶𝑅max = 0.95,
𝑀𝑅min = 0.001, 𝑀𝑅max = 0.100

GEO (Mohammadi-Balani et al., 2021) 𝐴𝑃min = 0.5, 𝐴𝑃max = 2.0,
𝐶𝑃min = 1.0, 𝐶𝑃max = 0.5

IMODE (Sallam et al., 2020) 𝑁min = 4, 𝑅𝑎𝑡𝑒𝑎 = 2.6
SHADE (Tanabe and Fukunaga, 2013) 𝑀𝐶𝑅 = 0.5, 𝑀𝐹 = 0.5
DE-TS 𝜇 = 0.8, 𝛼 = 0.5
DE (Storn and Price, 1997) CR = 0.9, 𝐹 = 0.5

operations. RGV and CNC will be executed according to the above
operations until the maximum processing time is allowed.

Fig. 7 shows the detailed flow chart of the proposed algorithm,
in which Fig. 7.a, .b, and .c describe the detailed process of the
three modules of population initialization, generation of offspring, and
population update, respectively. The DE-TS algorithm will run these
three modules in sequence. When the 7.c module is completed, if the
maximum number of function evaluations is not reached, return to the
7.b module to continue running, otherwise, end and return the running
result.

4. Simulation results and analysis

In this section, all simulation experiments are carried out on a
device equipped with an Intel i7-7600U@2.80 GHz dual-core processor.
On the one hand, the hardware environment in which the algorithm
runs also includes a running memory of 16G and a graphics card with
Intel HD Graphics 620. On the other hand, the software platform on
which the algorithm runs in Matlab 2020b. The parameter settings of
all algorithms are listed in Table 1. Among them, the IGAR algorithm
(Fan et al., 2019) proposed by H. Fan et al. is an improved algorithm
based on the standard GA (Holland, 1992), and the Golden Eagle
Optimization Algorithm (GEO) (Mohammadi-Balani et al., 2021) is
an evolutionary algorithm that simulates the multi-stage hunting of
golden eagles. Improved multi-operator differential evolution algorithm
(IMODE) (Sallam et al., 2020), success-history based parameter adapta-
tion for differential evolution (SHADE) (Tanabe and Fukunaga, 2013)
and the DE-TS algorithm proposed in this paper are all improved algo-
rithms based on the standard DE algorithm. At present, the source code
of the DE-TS algorithm proposed is available on our project homepage
https://github.com/MLNST-JUST/DE-TS, and the three comparison al-
gorithms, such as IMODE, SHADE, and DE, have been integrated into
the PlatEMO platform, you can refer to the content of our guidance
manual provided in our project homepage to install them. You can also
refer to the content of chapter 5 in the guidance manual to run the
experiments in this paper again. In addition, the source code of the
GEO algorithm has been uploaded to https://www.mathworks.com/
matlabcentral/profile/authors/14675656 by its authors.

Among the six algorithms listed in Table 1, the first five algorithms
are the main comparison algorithms of this paper. The last algorithm
in Table 1 has only been used in the transdifferentiation strategy
effectiveness experiment in the 4.1 section to verify whether the trans-
differentiation strategy proposed in the algorithm has a positive impact
on the effect. For the two algorithms of IGAR and GEO, all their
parameters are generated randomly. Their values will be randomly
selected between the maximum values and minimum values given by
the parameter list. For example, 𝐴𝑃min = 0.5, 𝐴𝑃max = 2.0 is given in
he parameter list of the GEO, indicating that its parameter AP will be
andomly determined between [0.5, 2.0]. In addition, the parameters of
he remaining four algorithms have given specific values in Table 1. The
opulation size of all algorithms was set to 50 during all experiments. In
rder to ensure the fairness of the experiment, the maximum function
valuation times of all algorithms are set to 500 times.
 i

9

Similar to Ding et al. (2020), Fan et al. (2019), Li (2019), Wang
t al. (2018, 2019) and Xiao (2019), the simulation experiments in
his study are carried out on the RGV and CNC Machining Parameter
ataset (RCMPD). All algorithms use the loss as the evaluation indicator

or improving the fairness of the experiments. During the simulation
xperiments, the PlatEMO component developed by the Institute of
ioinspired Intelligence and Mining Knowledge of Anhui University
Tian et al., 2017) was used. Except for the algorithm proposed, the
arameter combinations used by the comparison algorithm come from
heir original papers, or the default parameter combinations provided
y the PlateMo platform are called. Part of the visualization work in
his article is based on the tools on chiplot.online. Therefore, before
sing the source code provided in this paper, you need to install the
latEMO component version 3.3 in MATLAB. This research implements
he RDSP series of test problems based on Matlab 2020b, and readers
an download these files on the homepage of this project.

Five groups of experiments were conducted in this paper. In the
.1 section, we performed the transdifferentiation strategy effectiveness
xperiment. The DE-TS is proposed based on the improvement of the
E. We verify the effectiveness of the strategy introduced in the DE by
omparing the evolution curve of the DE-TS and DE. In Section 4.2,
e conducted comparative experiments on the three test problems of
DSP1-3 with reference to the experiments set in Ding et al. (2020),
an et al. (2019), Li (2019), Wang et al. (2018, 2019) and Xiao (2019)
o verify the superiority of the proposed algorithm in performance.
urthermore, we also verified the performance of the proposed al-
orithm and the comparison algorithms under different numbers of
NCs through experiments. In the 4.3 section, we conducted further
onvergence experiments on the proposed algorithm, and analyzed the
onvergence of the proposed algorithm and the distribution of loss.
urthermore, we conducted an extended simulation experiment in the
.4 section. The purpose of this experiment is to eliminate the potential
mpact that fixed test problems may have on the experimental results,
nd clearly show the distribution of the searching ability of different
lgorithms in the problem space. Finally, we performed an interpretable
xperiment in Section 4.5 to analyze the transfer probability matrix of
he proposed algorithm’s Markov process and the potential informa-
ion of the RGV material transfer path. The relationship between the
omplexity of logistics needs and the load of CNC further reveals the
nherent reasons for the superiority of the algorithm proposed.

.1. Transdifferentiation strategy effectiveness experiment

In the experiments of this sub-section, the DE-TS algorithm using the
ransdifferentiation strategy will be compared with the DE algorithm
ithout this strategy to verify the effectiveness of the transdifferenti-
tion strategy designed in this paper. The experiment is simulated for
0 consecutive days in a processing workshop using RGV for logistics
anagement, to better reflect the performance of different algorithms.
mong them, Fig. 8.a shows the loss of the DE-TS and DE algorithms
nder different numbers of CNCs. Both algorithms have repeated exper-
ments on all datasets, and the mean value is used as their experimental
esults. This greatly helps to eliminate the influence of system operating
arameters within different datasets on the RGV logistics load capacity.

It is not difficult to find that the number of CNCs in the processing
ystem has a certain influence on the loss of the initial population — the
maller number of CNCs, the higher loss of the initial population. This
ituation is closely related to the load situation of the RGV — when the
umber of CNCs increases, the average material logistics requests to be
rocessed by the RGV in the same unit time will be more intensive.
his will reduce the average loss of the initial population to a certain
xtent. Fig. 8.a uses circles and triangles to represent the DE-TS and
E algorithms, respectively — the fitness of the initial populations

or these two algorithms is almost indistinguishable. However, as the
umber of iterations increases, the performance of the DE algorithm

mproves significantly less than DE-TS in any case. Although the loss

https://github.com/MLNST-JUST/DE-TS
https://www.mathworks.com/matlabcentral/profile/authors/14675656
https://www.mathworks.com/matlabcentral/profile/authors/14675656
https://www.mathworks.com/matlabcentral/profile/authors/14675656
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Fig. 7. The graphical flowchart of DE-TS.
of the two algorithms is basically the same in the initial situation,
the DE-TS algorithm performs astonishing optimization ability in the
iterative process and can achieve fast convergence. Fig. 8.a uses dark
blue, green, and yellow for the cases where the number of CNCs is
8, 10, and 12, respectively. In these three scenarios, the loss obtained
by the DE-TS algorithm is 46.90% lower on average than that of the
DE algorithm. This experiment can show that the transdifferentiation
strategy can effectively help the algorithm to improve performance.
10
In processing scenarios with different numbers of CNCs installed, its
performance is significantly improved compared to DE.

Fig. 8.b shows the loss of the above two algorithms in the RDSP
series of problems. Both algorithms have repeated experiments in sce-
narios with different numbers of CNCs, and the average value is used
as their experimental results. This helps to eliminate the influence of
the complexity of shop floor logistics in different CNC scenarios on the
logistics load capacity of the RGV. Compared with Fig. 8.a, the loss of
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Fig. 8. Results of the effectiveness experiment of the transdifferentiation strategy. Fig. 8.a and .b show the algorithm performance under different numbers of CNCs and different
test problems, respectively.
Table 2
The average loss and its standard deviation of the five algorithms in the RDSP series of problems. The optimal algorithm in each scene has been
highlighted with a gray background; at the same time, the optimal situation of each algorithm under different CNC numbers is also marked in bold.
all the initial points in Fig. 8.b are very close, which just shows that
the number of CNCs has a certain influence on the formation of the
initial population, and the fitness of different processing parameters
on the initial population impact is minimal. The simulation results
show that the DE-TS algorithm still performs significantly better than
DE after eliminating the effect of the number of CNCs on the results.
The dark blue, green, and yellow in Fig. 8.b are used to represent the
performance of the algorithms under the three problems of RDSP1-3,
respectively. Under different problems, the loss obtained by the DE-TS
algorithm is 45.80% lower than the DE algorithm on average — this
value is similar to the average 46.90% obtained in the previous experi-
ment, indicating that this may be the average level of the difference
between the optimization capabilities of DE-TS and DE. In Fig. 8.b,
DE-TS achieves materially better results on RDSP1 than on RDSP2
and RDSP3, and this phenomenon also exists in other algorithms.
Although the processing parameters have little effect on the initial
population level produced by any algorithm, the difficulty of algorithm
optimization varies significantly under different problems—a feature
that is independent of which algorithm is used.

4.2. Comparative experiment

In the experiments at this stage, the proposed algorithm will com-
pare the performance with a variety of other algorithms. On an ar-
bitrary test problem, each comparison algorithm was simulated in
the RGV workshop for 30 consecutive days and repeated 15 times.
The results of this comparative experiment have been summarized in
Table 2.

Table 2 contains RDSP1-3 test problems, each of which contains
three different machining scenarios with 8, 10, and 12 CNCs. Among
them, 𝑁𝐶𝑁𝐶 is used to represent the number of CNCs, and D is used
to represent the dimension of the current problem. First, a side-by-side
comparison of different algorithms is performed. In Table 2, there is
almost no difference in the algorithmic effects of the three algorithms,
GEO, IMODE, and SHADE. The IGAR algorithm is a targeted opti-
mization algorithm for RDSP problems. Compared with the previous 3
algorithms, it works best. However, in all test problems, the effect of the
DE-TS algorithm is the best, which shows that the transdifferentiation

strategy designed in this paper has a significant positive impact on the

11
RDSP series of problems. In addition, looking at the different scenarios
of each test problem individually, when the number of CNCs increases,
the complexity of the logistics control in the processing workshop
and the dimension of the problem also increases. Likewise, when the
number of CNCs increases, the performance of any algorithm shows a
decreasing trend. Comparing longitudinally within each algorithm, it
is evident that the three algorithms GEO, IMODE, and SHADE all have
similar performance on RDSP1 and RDSP3, and all have the worst effect
on the RDSP. However, regardless of the number of 𝑁𝐶𝑁𝐶 , both IGAR
and DE-TS algorithms have the best performance on RDSP1, followed
by RDSP3 and RDSP2, which is consistent with the conclusion drawn
in the previous experiments: the optimization difficulty of the RDSP1
problem is significantly lower than that of the other two problems, and
the optimization difficulty of the RDSP2 is slightly stronger than that
of the RDSP3. Further, based on the data in Table 2, we calculated the
mean values of the output rate F of the four comparison algorithms on
9 test cases, and subtract them from the output rate of DE-TS to obtain
the difference between the output rate of DE-TS and the comparison
algorithms on each test case. Then, the mean value of these differences
was calculated. The result shows that the output rate of DE-TS is
25.68% higher than that of the comparison algorithms on average.

Fig. 9 shows the average performance and running time of all the
comparison algorithms included in Table 2 on different test problems.
On the one hand, on all test problems, the performances of SHADE,
GEO, and IMODE algorithms are very close, which is consistent with the
previous results. Among the three algorithms, GEO takes the shortest
time, and IMODE takes the second place. On the other hand, the
performance of the IGAR and DE-TS algorithms is obviously better than
the other three algorithms. In most cases, IGAR runs longer than DE-
TS. Except for DE-TS, there is almost no difference in the average loss
obtained by any algorithm in the same scene. In Fig. 9, the ordinates
of the points of the same color and shape are basically the same—this
indicates that DE-TS has a stronger ability to explore the solution space.
Furthermore, most of the results of all algorithms exhibit a tendency to
move to the upper right of the image area when the number of CNCs
increases. Many studies have confirmed that evolutionary algorithm has
the ability to discover effective rules and strategies, not just random
enumeration of the huge search space (Siddique et al., 2021), but how
to balance the convergence speed, algorithm effect, and other aspects is
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Fig. 9. The relationship between the loss and the running time of the five algorithms on the RDSP1-3 test problem. Among them, dark blue, green, yellow, orange, and red are
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Fig. 10. Convergence test result. The figure shows the distribution of loss of DE-TS on RDSP1, RDSP2, and RDSP3 in dark blue, green, and orange respectively.
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till a disturbing obstacle (Tang et al., 2015). Fig. 9.d can be obtained
y connecting the mean points of any algorithm under different CNC
umber scenarios. It is simple to discover that the convergence speed of
he three algorithms, GEO, IMODE, and SHADE, is slightly better than
he other two, but their algorithm performance is always significantly
ower than the others. At the same time, although the algorithm perfor-
ance of IGAR and DE-TS is similar in some cases, the slope of DE-TS

n Fig. 9.d is significantly higher than that of IGAR. This phenomenon
uggests that the running time of the DE-TS algorithm is less affected
y changes in the problem size.

.3. Convergence experiment

In this section, a high-intensity convergence experiment was per-
ormed to analyze the convergence of the proposed algorithm. In
his experiment, the DE-TS controls CNC and RGV for collaborative
perations in a 30-day processing scenario. At this time, the parameter
ettings of the DE-TS algorithm are still consistent with Table 1. We use
he proposed algorithm to solve the RDSP1-3 when the number of CNCs
 t

12
s 10. Each problem has been run 50 times repeatedly using the DE-TS
o understand the distribution of the solution obtained. The result of
he convergence experiment has been shown in Fig. 10.

Fig. 10 shows the distribution of the results of 50 repeated exper-
ments of DE-TS on RDSP1-3. The 𝑥-axis of Fig. 10 is loss, and the 50
imes solution results of each problem are drawn in the corresponding
rea with translucent points. Then, a boxplot is drawn above the point,
ith the median being marked above the axis, and the interval between

he upper quartile and the lower quartile being marked below the axis.
e also drew a distribution map of the results above the boxplot to

learly show the distribution of those results. First, we compare the
esults of this experiment with the previous comparison experiment.
ccording to the results in Fig. 10, we can get that the average loss of
E-TS on RDSP1-3 is 27.72%, 43.91%, and 7.02% respectively, which

s highly close to the result in Table 2, and the difference between
he mean values of loss in the two experiments is not more than ±
.60% of the results in Table 2. This also verifies the convergence
f the proposed algorithm to a certain extent. Secondly, according to
he results in Fig. 10, we can get that the intervals from the lower
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Fig. 11. Algorithm loss distribution diagram. Fig. 11.a–.e show the loss distributions of the five algorithms on the extended problem space. At the same time, Fig. 11.f also shows
he distribution of the difference of the loss of the two algorithms with the best performance.
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uartile to the upper quartile of the DE-TS on the RDSP1-3 are [25.55%,
8.56%], [43.57%, 43.91%] and [47.02%, 47.27%] respectively. Their
nterval lengths are 3.01%, 0.34%, and 0.25% respectively. In general,
he distribution of the results of the DE-TS on any test problem is
ery close, which shows that the proposed algorithm has a strong
onvergence-especially on RDSP2 and RDSP3.

In the boxplot in Fig. 10, the distribution of points does not appear
o be continuous, because the calculation function of loss is not a
ontinuous function. We have explained the calculation method of loss
n (3). Each control scheme generated by an algorithm can obtain
he corresponding loss according to (3), but their distribution is not
ontinuous. In addition, in Fig. 10, the median of RDSP2 is the same as
he upper quartile, and the median of RDSP3 is the same as the lower
uartile. This also shows that the result of the DE-TS algorithm is highly
onvergent.

.4. Extended simulation experiment

In order to explore the limit capability of the proposed algorithm,
n the experiment in this sub-section, all algorithms are subjected
o extended simulation experiment on an extended set of standard
xperiment. First, the upper and lower limits of the time it takes for
CNC to complete a class I machining and a class II machining are

xtracted from all test problems — these data are used to form the ex-
erimental scope of the extended simulation experiment. Subsequently,
he repeated experiment was performed on all test problems, and the
umber of CNCs in each experiment was averaged over all possible
alues. Finally, the mean value of all test results at each data point
s used as the value of the corresponding data point to obtain Fig. 11.
he purpose of this part of the experiment is to eliminate the potential

mpact of fixed test problems on the experimental results, and to clearly
how the distribution of the solving ability levels of different algorithms
n the problem space.

Fig. 11.a–.e show the algorithm loss distribution of the five al-
orithms DE-TS, SHADE, IGAR, GEO, and IMODE on the extended

roblem space, which is meritorious to study the distribution of solving i

13
bility of different algorithms on it. In those heatmaps, the closer the
olor is to light yellow, the higher the loss of the algorithm and the
orse the effect of the algorithm; on the contrary, the closer the color

s to dark blue, the lower the loss of the algorithm and the better the
ffect of the algorithm. The same as the previous conclusions, the loss
istributions of the three algorithms SHADE, GEO, and IMODE are rela-
ively similar and are less affected by the processing parameters. When
he processing time of both process I and process II decreases rapidly,
he material demand in the processing system increases rapidly. At
he same time, the effects of these three algorithms are reduced to

certain extent. This phenomenon is reflected in the heatmaps as a
ighter yellow in the upper left corner of the image. Furthermore, these
hree algorithms all perform significantly worse than the other two
n the entire extension problem space, which is consistent with the
onclusions drawn in previous experiments.

Figs. 11.a and 8.e show the loss distributions of DE-TS and IGAR
n the extended problem space, respectively. Obviously, DE-TS outper-
orms IGAR. Similar to other algorithms, the closer to the upper left of
he heat map, the denser the logistics requirements of the workshop,
nd the higher the loss of the DE-TS algorithm; the more to the lower
ight of the heat map, the more dispersed the logistics needs of the
orkshop, the better the algorithm works. However, in the process of
pproaching the lower right corner of those images, the change speed of
he loss of the algorithm in different directions is inconsistent: the route
pproaching from the left to the lower right corner of those images,
hile the route approaching from the upper right corner of those

mages is gentle. This may be due to the fact that the first processing
peration has a greater impact on the material in the processing shop,
hile the subsequent processing operation has relatively less impact on

t. Fig. 11.f shows the difference in loss between IGAR and DE-TS. It is
rystal clear that the whole image is above the xoy plane, indicating
hat the algorithm effect of DE-TS is always better than that of IGAR.

hen the logistics demand is more intensive, the gap between those al-
orithms is not significant. However, when the logistics demand is more
parse, although the effects of the two algorithms are overwhelmingly

mproved, the loss difference between the two is increasing, indicating
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Fig. 12. Material transfer diagram. Fig. 12.a–.c shows the transfer probability matrices of the Markov process on RDSP1-3. At the same time, Fig. 12.d–.f also visually shows the
RGV material transfer path information of the proposed algorithm on RDSP1-3.
that DE-TS has better solution space exploration ability and algorithm
potential. As has been confirmed in previous experiments, DE-TS is less
affected by processing parameters than IGAR.

4.5. explainable experiment

In the previous experiments, the effectiveness of the proposed al-
gorithm has been verified. To explore the internal reasons, we further
analyzed the results of DE-TS in this experiment and tried to explain the
advantages of DE-TS with these results. In this stage, DE-TS controls
CNC and RGV to work cooperatively in the processing scene for 30
consecutive days. At this time, the parameter settings of the DE-TS are
still consistent with Table 1. In the scenario where the number of CNCs
is 10, we use the proposed algorithm to solve the three test problems
of RDSP1-3. Each problem was repeatedly run 50 times with the DE-
TS to avoid the impact of contingency on the results. For each test
problem, we selected the result with the lowest loss in 50 runs, and
derived the final population after consuming 500 evaluation times, to
further analyze the internal reasons for the superiority of DE-TS. The
choice of each step of the RGV material transfer path is treated as a
Markov process. By statistical calculation of 50 individuals in the final
population, we have obtained the corresponding transition probability
matrix of the corresponding Markov process.

The transfer probability matrix of the DE-TS under the three prob-
lems of RDSP1-3 is displayed in Fig. 12.a–c. It can be seen that the
elements on the diagonal line of these three matrices are 0, which
shows that after the RGV visits a certain CNC, it is impossible to
immediately access this CNC again. This situation is in line with reality.
In fact, after RGV accesses a CNC, it will access a CNC that can handle
the next process. If the CNC visited is already the CNC handling the
last process, RGV will then access a CNC handling the first process.
Therefore, after accessing a CNC, not only this CNC cannot be accessed
again immediately, but all other CNC with the same type cannot be
14
accessed immediately. Because different individuals in the population
have different tool allocations for CNC, we can only see elements with
a value of 0 on the main diagonal of the transition probability matrix. It
should be noted that the RGV transition is directional, so the transition
probability matrix is not symmetric according to the main diagonal.
The closer the numbers between different CNCs are, the closer their
actual distances are in reality. In the three transfer probability matrices,
most of the elements with large values are distributed near the main
diagonal, which also shows that the proposed algorithm has excellent
scheduling control capability. When selecting the continuation CNC
node for RGV, the physical characteristics can also be taken into ac-
count, to reduce the logistics transfer time and improve the processing
efficiency of the system. It should be noted that for some CNCs with
too large or too small numbers, some elements may not conform to
this rule, because these CNCs are distributed at the two poles of the
orbit. When the nearby CNC cannot match the processing demand, RGV
can only find other CNC to the inside to match the current processing
demand.

Furthermore, the information on the RGV material transfer path of
the optimal individual of the proposed algorithm on each of RDSP1-3
is shown in Fig. 12.d–.f, to further analyze the characteristics of the
proposed algorithm on logistics control. The interior of these three
subgraphs shows the RGV transfer path between different CNCs in
different colors. These lines start from one CNC and point to another,
indicating that there is a corresponding RGV material transfer path in
the optimal individual. We have counted the complete RGV material
transfer path of the optimal individual. The thicker the line in those
figures, the more times the path is executed. The length of the inner
ring in those figures also shows the proportional relationship between
the number of processing times performed by different CNC. It can
be seen that the logistics demand of RDSP1 is the simplest, followed
by RDSP3, and the material demand of RDSP2 is the most complex.

In RDSP1, the total processing times of different CNCs are nearly the
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same, but there are significant differences in RDSP2-3. This is because,
in RDSP2-3, the processing time required between different processes is
quite different. Therefore, the number and processing times of different
types of CNC are also affected. The ring of the outer circle of the sub-
graph d-f in Fig. 12 shows the proportional relationship between the
actual processing time of each CNC. For a CNC, the larger the angle
it occupies in the outer ring, the longer the actual processing time it
consumes. If the actual processing time of different CNCs is significantly
different, it means that some CNCs are idle for a long time under the
current control scheme. It can be seen from those figures that DE-TS
has excellent control ability. DE-TS can indirectly control the processing
load of CNC by controlling the RGV material transfer path, making the
processing load of each CNC as consistent as possible. Regardless of the
simple or complex logistics requirements, the proposed algorithm can
balance the needs of different processes, and make any CNC run under
a processing load as high as possible. This further reveals the inherent
reason for the superiority of the proposed algorithm.

5. Conclusion

In order to improve the processing efficiency in the workshop using
RGV for logistics management, this paper proposes an improved differ-
ential evolution algorithm based on the transdifferentiation strategy,
called DE-TS. In nature, organisms may heal themselves and continue
to survive even after being harmed. Accordingly, in the proposed al-
gorithm, each individual suffers different degrees of damage according
to the fitness value and may therefore lose some data. Subsequently,
individuals who were not mortally wounded may complete the required
data through self-healing and continue to survive. This strategy ded-
icates to maintaining population diversity. The experimental results
show that, compared with other comparative algorithms, the DE-TS al-
gorithm not only achieves the best algorithm performance in the RDSP
series of problems, but also has a stable solving ability distribution level
on the extended problem space. It is worth noting that the advantages
of the proposed algorithm are more significant when the processing
time required for the processing operation is longer.

However, in the process of optimization, this paper converts the
output of finished materials into the loss of the processing system but
does not consider the impact of other potential factors on the processing
system. In fact, the more distance the RGV moves and the longer the
movement time, the more severe the wear of the RGV track and the
increase in the power consumption of the workshop. In another work
we are doing, the moving distance and moving time of the RGV are also
taken into account in the optimization process of another algorithm,
in order to ensure the efficient production of finished materials, while
extending the life of the track, and reducing power consumption and
carbon emissions.
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