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Abstract. Recent advancements in Instruction Tuning (IT) have shown
promise for aligning Large Language Models (LLMs) with users’ inten-
tions, yet its efficacy is often compromised by dependence on high-quality
datasets. Previous works have concentrated on the aggregation or pro-
duction of huge IT datasets through human labor or significant cost-
intensive LLM APIs, which lacks adequate mechanisms to guarantee the
quality of the resulting data. Moreover, training on such amount of IT
data is both time-consuming and costly. To address these issues, we
present Bread (Instruction Mining through Balanced REtrieval And
Dynamic Data Sampling), a novel approach designed to minimize the
requisite volume of IT data. Bread uses a two-stage strategy combining
balanced retrieval and dynamic sampling to focus on data diversity and
quality, offering a cost-saving solution without relying on any specific
LLMs. Experimental results suggest that Bread outperforms baselines
and shows great flexibility across various IT datasets and LLMs, thereby
marking a step forward in efficient Instruction Tuning. Our code is avail-
able at https://github.com/mihara-bot/Bread.

Keywords: Large Language Models - Instruction Tuning - Data Selec-
tion

1 Introduction

Instruction Tuning (IT) involves training with instruction data pairs to func-
tion as an efficacious technique for improving the proficiency of Large Language
Models (LLMs) in following user directives and enhancing controllability, which
effectively mitigates the discordance between the pre-training objectives of LLMs
and the actual intentions of users, thereby unlocking the potential of LLMs across
an extensive array of fields such as Law [25], Medicine [30], Finance [19], as well
as a variety of NLP tasks [40]. The general pipeline of IT is shown in Fig. 1.
To be specific, IT utilizes data in the (Instruction, Output) format to fine-tune
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Fig. 1. Instruction Tuning involves training pre-trained vanilla LLMs on instruction
datasets in supervised manner to enhance their capability to follow instructions.

LLMs [38]. Herein, Instruction is the specific guideline issued by a human to the
model, while Output signifies the expected output.

Currently, IT is confronted with two significant challenges from the perspec-
tive of data. On the one hand, there is a notable lack of IT datasets with broad
applicability, and most are highly specialized, suitable only for certain domains,
which limits the ability of LLMs to generalize across various tasks. On the other
hand, when LLMs are fine-tuned using low-quality data, there is an increased
risk of the models generating inaccurate or imaginary content, a problem often
referred to as hallucination, regardless of the size of the datasets used [15]. Ad-
ditionally, recent works [41,14] have highlighted the importance of data quality
rather than quantity in IT, especially evidencing substantial outcomes through
merely 1,000 manually curated high-quality data examples [41].

To address the scarcity of IT datasets with broad applicability, researchers
have implemented three primary strategies to cultivate more generalized datasets:
collecting data via human contributors [31,7], generating data through LLMs
[27,22,34,32,26], and a hybrid method that merges human data collection with
LLM generation [16]. Despite these efforts, creating instruction datasets of suf-
ficient scale, often ranging from tens to hundreds of thousands of examples, has
demanded significant investments in terms of time and computational resources.

In an attempt to overcome the challenges associated with the abundance
of low-quality IT data, researchers have proposed various methods aimed at
downsizing the total amount of data required for IT training through selective
filtering or sampling techniques [5,17,42]. These methods, while helpful, have
certain drawbacks. Alpagasus [5] leverages advanced LLMs such as ChatGPT
and Claude to assess the quality of instruction data samples. The reliance on
these additional models means that Alpagasus may overlook the intrinsic capa-
bilities of LLMs and also incurs high costs due to API calls for closed-source
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models. Cherry [17] proposes a new metric known as Instruction Following Diffi-
culty (IFD), which measures how challenging the instruction data samples are for
specific LLMs, which involves extensive computation. Lastly, DQ [42] employs a
general data sampling strategy that builds on GraphCut [12], concentrating on
the data distribution aspect for keeping data quality. However, it falls short in
enough control for ensuring data diversity.

To address these issues, we propose Bread (Instruction Mining through
Balanced REtrieval And Dynamic Data Sampling), a two-pronged approach
that promises no reliance on additional LLMs and reduces computational com-
plexity. Bread consists of two core stages: Diverse Data Retrieval and Dy-
namic Data Sampling. The initial stage is marked by the employment of
embedding-driven clustering to retrieve data, purposely filtering out superfluous
instances to guarantee a diverse dataset, which is pivotal in striking a balance
between the diversification of filtered data and minimization of redundancy. Sub-
sequently, the second phase employs a dynamic data sampling method aimed at
further condensing the dataset size. This technique prioritizes data representa-
tiveness while simultaneously sustains diversity, ensuring that the core charac-
teristics of the dataset are not compromised. With an extensive range of appli-
cability, Bread exhibits robust versatility and scalability across diverse LLMs,
demonstrating flexibility in adapting to the characteristics of different models.
Moreover, it can handle datasets from a multitude of sources (whether from hu-
man collection or LLM generation), revealing an inherent ability for seamless
integration and usability. Our contributions are as follows. Firstly, we propose
Bread, a novel instruction data mining approach based on balanced retrieval
and dynamic data sampling. Bread outperforms baseline methods in almost all
cases under different settings. Secondly, Bread can retain 10% of the original
large-scale I'T datasets while preserving a substantial amount of their diversity
and representativeness, thereby reducing costs and computational resources for
training LLMs. Finally, Bread generalizes well to wide IT datasets (whether
from collection or generation) and LLMs, thereby marking a step forward in
efficient IT.

2 Related Work

2.1 Instruction Tuning

As a novel paradigm of Fine-tuning, Instruction Tuning enhances LLMs’ per-
formance by leveraging (Instruction, Output) pairs. Within this framework, the
term Instruction specifies the human directive to the model, while Output en-
capsulates the model’s expected response in accordance with the Instruction.
Currently, the tuning methods in IT remains somewhat static, dominated by
approaches such as fine-tuning and Parameter-Efficient Fine-tuning, exemplified
by techniques like LoRA [18]. Consequently, the formulation of IT datasets has
garnered significant research focus. At present, three principal methodologies
prevail for constructing instruction tuning data: Human Collection [31,7], LLM
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Generation [27,22,34,32,26], and a hybrid of Human Collection and LLM Gen-
eration [16]. The Human Collection approach principally adapts conventional
NLP tasks into a standardized format of instruction pairs. In contrast, LLM
Generation involves devising various prompting mechanisms to harness LLMs’
capabilities in generating appropriate data instances. Considering the problem
of human errors and LLM hallucination [15,23,39,11] as well as the huge cost
for tuning using huge amounts of data, prior works have attempted to reduce
the instruction data size through a few strategies [5,17,42]. Compared to these
strategies, Bread is not reliant on supplementary LLMs, exhibits minimal compu-
tational complexity, and effectively balances between data diversity and quality.

2.2 Data-centric AI

In the preceding decade, the domain of data-centric artificial intelligence (data-
centric AI) has witnessed extraordinary developments. A series of seminal contri-
butions have markedly propelled the field forward [6,21,36,37]. The foundational
premise underpinning data-centric Al is the recognition that the caliber of data is
of equivalent significance as algorithmic advances in the machine learning (ML)
spectrum. For a finer point of clarification, it becomes vital that methodologies
for data cleaning and mining showcase a heightened propensity for automation
and flexibility [36,37]. The introduction of LLMs like ChatGPT heralds a new
transformation, serving as a beacon for pivotal shifts across NLP applications.
Presently, the substantial majority of LLMs have adopted the potent Trans-
former framework [29], which utilizes layers of transformer encoders or decoders
to enhance data processing proficiencies. This transformative leap constitutes a
distinguished milestone, underscoring the growing prominence of quality data
in tandem with the architectural progression of models. Our work is directed
toward the meticulous curation of high-quality datasets, favoring this approach
over the mere accumulation of extensive data quantities.

3 Method

As shown in Fig. 2, Bread represents a two-stage data mining strategy merging
Diverse Data Retrieval and Dynamic Data Selection. In the first stage (Section
3.1), embedding-based Clustering assisted with Perplexity (PPL) score ranking
is adopted to gather valuable diverse data samples, with extraneous data being
pruned. This is followed by iterative dynamic sampling (Section 3.2) to maintain
dataset representativeness while ensuring variety for further selection.

3.1 Diverse Data Retrieval

Aligned with contemporary research findings [1,33], which highlight the enhance-
ment of In-Context Learning capabilities in LLMs through diversity-based meth-
ods and the performance improvement brought by more diverse datasets in IT
[41], our initial phase employs a semantic diversity-oriented strategy for data
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Fig. 2. The overview of Bread. Stage 1 involves assembling datasets characterized by
high diversity, followed by iterative dynamic sampling to retain the most representative
samples while preserving diversity within the dataset in Stage 2.

Algorithm 1 Algorithm for Diverse Data Retrieval
Input: List of instruction data embeddings F and correspoding PPLs P, number of
samples per cluster n, number of clusters k, sampling thresholds thiow and thuign.
Output: Retrieved dataset with balanced diversity D’.

1: Initialize an empty set D' = { }

2: Apply KMeans Clustering to E to partition into k clusters

3: for i =1 to k do
4:  Identify and collect embeddings E; that belong to cluster @

5:  Sort samples within cluster ¢ based on P
6.

7
8
9

Determine the middle confidence range using thiow and thnign percentiles
Uniformly sample n embeddings from the middle confidence range
: Append the corresponding samples to D’
: end for
10: return D’
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Algorithm 2 Algorithm for Dynamic Data Sampling

Input: Instruction dataset obtained through Dynamic Data Sampling D', list of cor-
responding embeddings E, overall sampling ratio r, number of bunches b.
Output: Final sampled dataset Dy.

1: Initialize index set I = {0, 1,...,|D’| — 1}, collection of bunches B = {}

2: Compute final sample size p = |D’'| x r

3: for i =1to b do

4: Select subset S; of size % from D’ via Eq. 2

5:  Update bunches B < BUS;

6:  Remove indices of samples in S; from I and corresponding embeddings from E
7: end for

8: Initialize selected index set S = { }

9: for subset S; in B do
10:  Compute target size t; for S; via Eq. 3
11:  Uniformly sample ¢; indices based on target count from S; and append to &
12: end for
13: return Dy = {D'[i]|i € S}.

retrieval. Utilizing KMeans Clustering [13,24] on embeddings of instrution data
from LLMs to train, each cluster is posited to embody a distinct semantic topic
within the dataset. From these clusters, we extract samples guided by PPL score
ranking and predetermined sample thresholds.

Specifically, we utilize the mean embeddings from the last hidden layer of
corresponding LLMs. PPL scores are acknowledged as a robust indicator of an
LLM’s prediction uncertainty concerning specific data samples. Drawing inspira-
tion from Curriculum Learning principles [3], we strategically select data samples
within the range constructed by defined sampling thresholds to further enrich
data diversity, concurrently mitigating the inclusion of outlier representations.
The sampling thresholds are set as (25%, 75%) and (n, k) combination is set as
(30, 100). The complete process of first stage is described in Algorithm 1.

3.2 Dynamic Data Sampling

In this stage, we iteratively generate bunches and dynamically adjust target
counts for each bunch to select the most representative data samples while keep-
ing diversity from D’, drawing inspiration from [42,12].

The iterative selection for i-th sample in j-th bunch is defined as follows:

T} = arg max Z Cy(zg) — Z Co(xy) (1)
desy™t deD\S1\S2\\SF

where D'\ S1\ S\ - - - \Sffl denotes the remaining part of the data in D’ after
selecting k& — 1 samples in j-th bunch, C;(xx) and Cy(zy) are constructed by
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maximizing submodular gains P(xy) in feature space defined in GraphCut [12]:

P(zy)= > |If(d)—f@)l>= > 1@ = flaw)l] (2)
desF—t Cl('zk) deD\SF~! CQ('M)

where Sf~! denotes selected examples and D’ \ SF~! denotes the remaining
examples. Moreover, the target sample size t; for the i-th bunch is calculated to
ensure a balanced representation of the dataset across the bunches, taking into
account their respective densities, which is calculated as:

; = max (int( "2' < p), 1) (3)

where |S;| represents the size of a certain bunch, m is the summation of the sizes
of all bunches, and p is the final number of samples computed as the product
of |D’| and sampling ratio. This step guarantees that no bunch is over- or un-
derrepresented in the final result dataset Dy. We set r as 10% and b as 30 for
default settings. The complete process of Dynamic Data Sampling is described
in Algorithm 2.

4 Experiments

4.1 Experimental Setup

Models and Datasets We select three open-source LLMs in our experiment:
LlaMA-7B [28], ChatGLM3-6B [8], and Baichuan2-7B [2|. Moreover, we select
11 representative instruction tuning datasets of different scales and construction
sources to validate the effectiveness of our method, wich more details provided
in Appendix A.

Evaluation Metrics and Baselins The challenge of evaluating instruction-tuned
LLMs is widely recognized [4], prompting us to execute extensive experiments
to demonstrate the effectiveness and reliability of Bread. In order to perform a
reasonable assessment of LLMs across standard tasks and those unseen tasks, we
assess them on established benchmarks including MMLU [9], Hellaswag
[35], and OpenbookQA [20]. Bread is compared against 3 distinct scenarios
for thorough evaluation: (1) Random Selection utilizes randomly chosen data
samples as a baseline for comparison; (2) Instruction Data Mining Strate-
gies including Alpagasus [5], Cherry [17], and DQ [42]; (3) Full training em-
ploys the entire dataset for model training which is a common practice in IT.

Implementation Details We employ LLaMA-Factory framework 4 for IT. In our
experiments, we utilize LoRA [10] for parameter-efficient fine-tuning. All training
runs are performed on a single NVIDIA RTX 3090 GPU. The LoRA rank is set

4 https://github.com/hiyouga/LLaMA-Factory
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Table 1. Main results of accuracy on MMLU in setting of data keeping ratio as 10%.
The scores are averaged across all parts in MMLU: STEM, Social Sciences, Humanities,
and Other. Each dataset abbreviation in the table matches the respective dataset in
Table 4. Some items are missing as their methods weren’t evaluated on those datasets.
Random denotes uniformly sampling 10% data from the training set.

Training Dataset

LLM Method
Dolly LIMA Alpaca Alpaca-g Unn-g Dynosaur wi-vl wi-v2 dro-vl dro-v2 longform

Alpagasus 35.26 — 33.29 - - - - - - - -

Cherry - - 28.85 - - - 26.10 — - - -
LlaMA-7B DQ 33.43 34.47 36.29 3449 34.59 34.40 32.20 34.08 30.75 33.78 32.55
Bread 36.11 34.62 36.53 36.94 34.74 35.99 34.00 35.16 31.76 35.18 33.46
Full 33.08 31.08 33.16 33.58 32.56 34.48 34.20 33.49 30.78 32.76 31.58
Random 32.58 30.54 32.48 31.96 32.20 33.47 30.89 32.59 28.80 27.60 30.56

Alpagasus 49.38 - 49.60 - - - - - - -

Cherry - - 48.52 - - - 48.90 — - - -
DQ 4852 49.56 49.65 49.36 48.80 48.73 49.37 47.05 42.91 41.56 45.80
Bread 49.04 49.80 49.92 49.68 49.43 49.50 49.94 47.67 43.40 42.60 45.89
Full 47.52 48.30 47.26 43.78 45.60 42.60 47.79 44.38 42.78 40.79  44.26

Random 44.58 47.26 42.38 43.56 44.60 43.20 46.78 44.79 40.60 40.38 41.29

Alpagasus 49.29 - 49.01 - - - -
Cherry 44.84 48.55
DQ 46.15 28.48 48.77 49.17 28.47 41.88 49.04 47.56 36.08 33.65 30.25
Bread 47.99 29.42 49.24 49.24 28.57 49.31 50.03 48.09 36.89 34.27 36.68
Full  44.82 28.46 46.74 47.82 27.82 39.15 46.89 44.28 35.96 32.60 29.82

Random 44.67 24.60 41.68 47.45 26.45 38.26 44.26 43.66 35.88 31.26 28.69

ChatGLM3-6B

Baichuan2-7B

as 8 and the dropout rate is set as 0.1. Given the nature of the datasets under
consideration, we limit the maximum input length to 512 tokens. We endeavor
to align our training hyperparameters with those documented in prior studies
[27], including a learning rate of 5 x 107, a batch size of 2, and the employment
of gradient accumulation with a step size of 2 across three epochs. In addition,
we implement a Cosine learning rate scheduler without the inclusion of warm-up
steps and enable mixed precision training (fp16) to enhance training efficiency
and stability.

4.2 Experimental Results

Main Results The results on established benchmarks under data keeping ratio
of 10% are shown in Table 1 and Table 2. In most instances, training models with
the full dataset does not yield better outcomes than using strategic data selection
methods, underscoring that the full dataset contains some low-quality data and
quality of data is more crucial than quantity. Furthermore, Bread consistently
outperforms all other baseline methods and random selection in most situations
across all three benchmarks and three LLMs, showcasing our method’s success
in preserving both the diversity and the representation of the data.

Ablation Study As shown in Table 3, the omission of either Stage 1 or Stage
2 results in a huge decline in performance. For example, removing Stage 2 of
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Table 2. Main results of accuracy on Hellaswag and OpenbookQA in setting of data
keeping ratio as 10% and training dataset as Alpaca.

Hellaswag

LLM Method OpenbookQA
In-domain Zero-shot
Alpagasus  12.02 12.49 26.00
Cherry 12.92 12.02 23.60
DQ 14.38 14.30 25.80
LIaMA-TB plad 1644 16.81 26.40
Full 14.02 13.88 22.40
Random 11.58 11.74 21.56
Alpagasus  18.32 17.04 40.60
Cherry 19.90 19.20 36.60
DQ 21.82 21.66 40.40
ChatGLM3-6B 4 2258  22.10 43.00
Full 16.38 21.68 38.20
Random 15.78 21.04 37.29
Alpagasus  24.20 23.92 39.00
Cherry 25.17 24.26 42.80
. DQ 25.25 25.85 47.60
Baichuan2-TB - p 1 25.69  26.09 51.00
Full 24.18 24.02 39.20
Random 22.06 23.58 40.06

Table 3. Ablation study on Bread’s two stages. We select Dolly as training dataset
and set the data keeping ratio as 10%.

LLM Method MMLU Hellaswag

OpenbookQA
In-domain  Zero-shot

Bread 36.11 16.04 16.16 25.86
LlaMA-7B  Bread w/o Stage 2 29.94 (-6.17) 10.88 (-5.16) 12.43 (-3.73) 20.66 (-5.20)
Bread w/o Stage 1 29.46 (-6.65) 10.06 (-5.98) 10.41 (-5.75) 21.36 (-4.50)

Bread 49.04 21.76 21.88 41.26
ChatGLM3-6B Bread w/o Stage 2 48.64 (-0.40) 21.08 (-0.68) 18.66 (-3.22) 38.56 (-2.70)
Bread w/o Stage 1 48.62 (-0.42) 19.85 (-1.91) 18.06 (-3.82) 38.04 (-3.22)

Bread 47.99 23.86 25.87 50.60
Baichuan2-7B Bread w/o Stage 2 46.27 (-1.72) 21.46 (-2.40) 24.38 (-1.49) 47.21 (-3.39)
Bread w/o Stage 1 46.69 (-1.30) 21.58 (-2.28) 24.51 (-1.36) 48.06 (-2.54)

Bread causes a performance drop up to 6.17 for LlaMA-7B. These results under-
score that both stages of Bread are crucial for achieving optimal performance
across various LLM architectures and benchmarks. The consistent significantly
better results with both stages intact across all models and tasks demonstrates
the effectiveness of this comprehensive approach in preserving data diversity
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and representation, thereby enhancing model performance in complex language
understanding and reasoning tasks.

5 Conclusion

This paper introduces Bread, a novel instruction data mining method for enhanc-
ing Instruction Tuning with high-quality datasets, which combines Diverse Data
Retrieval for data diversity and Dynamic Data Sampling for representativeness.
Our empirical results indicate that Bread outperforms previous works, demon-
strating its effectiveness across various instruction tuning datasets from different
sources and compatibility with multiple LLMs. Therefore, Bread provides a nat-
ural and direct way for efficient Instruction Tuning with lower computation costs.
In conclusion, Bread not only serves to Instruction Tuning workflows but also
offers a potential reduction in environmental impact due to its computational
efficiency.
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Table 4. Instruction Tuning training datasets in our experiment. Human means the
dataset is constructed through human effort, LLM means the dataset is constructed
completely through LLMs, and Human and LLM means both sources.

Type Dataset Quantity Source
Dolly 15,011 [7]
Human LIMA 1,029 [41]
Alpaca 52,002  [27]
Alpaca-gpt4-en 52,002  [22]

Unnatural-instruction-gpt4 9,000  [22]
Dynosaur-sub-superni 66,695  [34]

LLM WizardLM-v1 70,000  [32]
WizardLM-v2 143,000 [32]
Dromedary-v1 360,674 [26]
Dromedary-v2 287,574 [26]

Human and LLM Longform 2,3652  [16]
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