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Abstract
Knowledge components (KCs) are the fundamental units of knowledge in the field of education. A KC graph illustrates
the relationships and dependencies between KCs. An accurate KC graph can assist educators in identifying the root causes
of learners’ poor performance on specific KCs, thereby enabling targeted instructional interventions. To achieve this, we
have developed a KC graph structure learning algorithm, named MAS-KCL, which employs a multi-agent system driven by
large language models for adaptive modification and optimization of the KC graph. Additionally, a bidirectional feedback
mechanism is integrated into the algorithm, where AI agents leverage this mechanism to assess the value of edges within
the KC graph and adjust the distribution of generation probabilities for different edges, thereby accelerating the efficiency
of structure learning. We applied the proposed algorithm to 5 synthetic datasets and 4 real-world educational datasets, and
experimental results validate its effectiveness in learning path recognition. By accurately identifying learners’ learning paths,
teachers are able to design more comprehensive learning plans, enabling learners to achieve their educational goals more
effectively, thus promoting the sustainable development of education.
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1 Introduction

The increasing global emphasis on sustainable development
has brought quality education to the forefront, as highlighted
by the United Nations Educational, Scientific and Cultural
Organization (UNESCO) and its 17 Sustainable Develop-
ment Goals (SDGs), which include goals, such as equitable
education, sustainable communities, and reduced inequal-
ities. Among the key pillars of educational development
are inclusivity, resource accessibility, educational technol-
ogy, and sustainability. Educational technology, in particular,
leverages digital tools and information systems to enhance
interactivity and broaden access to learning. Its integration
has transformed teaching and learning processes [2, 44].
However, traditional digital education often lacks sufficient
personalization and coherent instructional design, leading to
cognitive overload. Addressing these limitations requires a
deeper understanding of the structural relationships among
knowledge components (KCs) commonly referred to as
learning paths [20].

Learning paths capture the dependencies among knowl-
edge components and play a crucial role in guiding learners’
progression. Consequently, the completeness and hierarchi-
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Fig. 1 The proposed agentic workflow for KC graph structure learn-
ing. This framework injects the emergent intelligence of large language
models into the designed multi-agent system, enabling it to extract KCs
from real-world learning data and construct KC graphs. The agentic

workflow facilitates deep collaboration among learners, teachers, and
AI agents, assisting teachers in identifying the root causes of learners’
poor performance at the KC level, thereby providing support for the
development of targeted instructional interventions

cal organization of knowledge component structures are
widely recognized as key indicators of learners’ proficiency
[31, 35]. Recent studies have employed clustering meth-
ods to classify learners based on their knowledge structures,
uncovering links between structure patterns and learning out-
comes [10]. Graph structures [22, 23], particularly directed
acyclic graphs [21], offer an effective means to encode such
educational data. In these graphs, nodes denote individual
knowledge components and edges define directed dependen-
cies, thereby visualizing the logical flow of learning.

To address the inherent complexity of real-world knowl-
edge structures, we propose a multi-agent system for graph
structure learning specifically tailored for learning path
recognition. This system leverages a differential evolution
(DE) algorithm augmentedwith dynamic population control,
which is guided by artificial intelligence (AI) agents through
a bidirectional feedback mechanism. Experimental evalua-
tions demonstrate that our approach significantly improves
the accuracy of graph structure learning. The main contribu-
tions are as follows:

• We propose a Multi-Agent System for Knowledge Com-
ponent graph structure Learning (MAS-KCL), as illus-
trated in Fig. 1. The effectiveness of the proposedmethod
is validated using real-world educational datasets.

• We develop a large language model (LLM)-powered
agentic workflow for MAS-KCL, where the integration
of LLMs effectively facilitates the structural learning of
KC graphs.

• The KC graphs generated by MAS-KCL capture causal
relationships among KCs within a specific subject, offer-
ing data-driven support for instructional interventions.
For example, if a learner struggles with multiplication,
the root cause may lie in an insufficient understanding
of addition-related KCs. The proposed method also pro-
vides valuable insights for educational practice.

2 Related work

2.1 Causal graph

When recognizing learning paths, it is essential to determine
the relationships among KCs within a KC graph [20]. Most
KCs exhibit causal dependencies, which can be effectively
represented using a causal graph-a directed acyclic graph
(DAG) that models the connections between phenomena and
their underlying causes. A method for constructing causal
knowledge networks based on Bayesian networks (BNs) has
been proposed, leveraging causal relationships to build these
structures [38].

The application of causal graphs in educational research
has been widely acknowledged, offering key advantages for
causal inference and facilitating empirical investigation [7].
Their value lies in enabling explicit causal reasoning, sup-
ported by tools that assist researchers in uncovering causal
links, as demonstrated in educational technology studies
[39]. It is important to clarify that the concept of a causal
graph is closely related to the KC graph. A causal graph is
defined as a graph composed of a set of nodes and edges,
where the edges indicate causal relationships between ele-
ments in the node set. The KC graph further constrains the
node set to represent knowledge components specifically.

2.2 Knowledge component graph structure learning

KC graph structure learning has become a central topic
in intelligent tutoring systems (ITS). Early studies relied
on expert-defined prerequisite structures, typically modeled
using BNs, where domain knowledge is encoded as proba-
bilistic dependencies [3, 5]. To enhance flexibility and reduce
reliance on expert priors, later work proposed data-driven
approaches that learn conditional probabilities directly from
learners’ data [6]. These methods infer KC dependencies
by analyzing the temporal evolution of knowledge mas-
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tery, comparing patterns predicted by learner models [6, 26].
Dynamic Bayesian networks (DBNs) extended this line by
embedding causal relations between KCs [15], though they
suffer from parameter explosion when modeling multiple
prerequisites. To improve scalability and interpretability, the
embedding prerequisite relationships in student modeling
(E-PRISM) framework introduces interpretable parameters
and infers causal dependencies from learning trajectories [1],
while more recent research applies interventional and coun-
terfactual reasoning to extract explainable KC relationships
[38].

Moreover, data-driven approaches have also adopted rein-
forcement learning (RL) [18, 32] and graph neural networks
(GNNs) [27, 41] for KC graph learning. GNNs are effective
at capturing structural patterns but lack interpretability and
causal representation, and are often limited to static graphs.
RL-based methods treat graph construction as a sequential
decision process, aligning with the dynamics of learning, but
require careful reward design and struggle with sparse feed-
back. To address these limitations, we propose MAS-KCL, a
multi-agent system driven by LLMs. MAS-KCL employs an
agenticworkflowwhere LLM-based agents iteratively gener-
ate and adaptively modify KC graphs through interpretable
interactions. A bidirectional feedback mechanism enables
agents to assess edge importance anddynamically adjust gen-
eration probabilities, leading to efficient, interpretable, and
causally grounded KC structure learning.

2.3 AI agent for education

The Transformer architecture [4, 12, 36], driven by the
attention mechanism [45], has underpinned the rapid evo-
lution of LLMs [28], which are increasingly applied in
educational contexts. LLMs can generate personalized learn-
ing plans tailored to learners’ habits and backgrounds [19,
37], and support external tools through iterative dialogue
[46]. Frameworks such as LangChain have demonstrated the
capability to automatically generate contextualized mathe-
matical multiple-choice questions with improved accuracy
[17]. Recent studies have explored how LLMs and adap-
tive learning models serve as interfaces for human–computer
interaction (HCI) in personalized education [40], and how
multimodal large language models (MLLMs) can provide
synchronized visual content to enhance mathematics learn-
ing experiences in HCI contexts [13].

Parallel to this development, LLMs-based AI agents have
emerged as versatile tools in educational systems. By inte-
grating web services and modeling learner characteristics,
agents can infer learning domains and facilitate intelligent
information retrieval [16]. Multi-agent systems (MASs),
including those based on von Neumann architectures, have
shown effectiveness in enhancing learners’ learning and sup-
porting teaching processes [14].WhileMASs cannot replace

human roles entirely, they promotemulti-agent collaboration
(MAC) and learner interaction, improving learning outcomes
[29]. In this work, we adopt a MAS framework to optimize
the learning of KC graph structures.

3 MAS-KCL for KC graph structure learning

3.1 LLM-basedmulti-agent system

This section introduces the multi-agent system composed
of AI agents, which dynamically control parameters to
deliver decision outputs during the algorithm’s iterative pro-
cess. These agents interact with MAS-KCL by influencing
the optimization process through decisions continuously
updated via LLM calls. The overall interaction between
agents and theMAS-KCL-controlledpopulation is illustrated
in Fig. 2. In addition, the pseudocode of the proposedmethod
is provided in Algorithm 1.

Specifically, after each iteration of the algorithm, the
GameAgent is invoked using prompt engineering. It is asked
to determine whether to adjust the Ambient Pressure (AP)
parameter in MAS-KCL-based on the magnitude of loss
change observed in the current iteration-and to what extent.
The decision is returned in a structured JSON format, which
includes both the decision outcome and its reasoning. Before
the next iteration begins, the value of AP is updated accord-
ingly, allowing the algorithm to remain dynamically aligned
with the intermediate decisions made by the Game Agent,
as described in Algorithm 1. The value of the AP param-
eter determines the proportion of elite individuals retained
for the next iteration. It reflects the dynamic allocation of
computational effort between exploration and exploitation.

Similarly, the Positive Feedback Agent and Negative
Feedback Agent are invoked at the end of each iteration.
Based on the current loss change and parameter status, they
make decisions regarding the activation and adjustment of
the positive and negative feedbackmechanisms, respectively.
These decisions take effect in the subsequent iteration and are
passed to MAS-KCL through dynamic parameter control, as
described in Lines 20-21 of Algorithm 1. The Positive Feed-
back Agent focuses on identifying edges that contribute to
increased loss and aims to eliminate these low-quality edges
broadly across the population. In contrast, theNegative Feed-
back Agent is responsible for identifying edges associated
with decreased loss and promotes the widespread addition
of these valuable edges throughout the population. Together,
these agents collaborate to enable efficient learning of the
KC graph structure, thereby supporting teachers in making
informed instructional interventions, as illustrated in Fig. 1.
Further details on the interaction between the multi-agent
system and the MAS-KCL framework are provided in the
following Sect. 3.2.
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Fig. 2 Game agent and feedback agents. The diagram displays the interaction between the GameAgent and the population, as well as the probability
of adding new edges in the bidirectional feedback mechanism generated by the Feedback Agents

3.2 The structure of the proposedMAS-KCL

To improve the balance between exploration and exploita-
tion, the proposedMAS-KCL adopts a multi-sub-population
strategy that partitions thepopulation into superior, exploratory,
and elimination sub-populations. This structure allows cer-
tain individuals to exploit known promising regions while
others explore new areas, enhancing global search capacity
and avoiding premature convergence. The algorithm evalu-
ates each individual using a fitness score F , with the loss
defined as 1− F [20]. A higher F indicates better structural
alignment and, consequently, a lower loss, reflecting a more
effective solution.

The main process of the algorithm is detailed in Algo-
rithm 1. The procedure begins with the initialization of a
randompopulation and the setting of the Function Evaluation
(FE) counter to zero, as shown in Lines 1–2 of Algorithm 1.
In each iteration, DE is employed to generate an offspring
population, which is then sorted according to a predefined
optimization direction, as described in Lines 4–5. The off-
spring are ranked in ascending order of loss and divided into
three sub-populations, as outlined in Lines 6–7. The pro-
portion of the superior sub-population is controlled by the
ambient pressure parameter AP , where a higher AP pre-
serves more elite individuals, and a lower value encourages
exploration. The exploratory sub-population, sized as (1 −
AP) · N , is further refined through a bidirectional feedback
mechanism, as implemented in Lines 7–15 of Algorithm 1.

Within this feedback mechanism, individuals are updated
based on their sub-population assignments: PPFO (high-
fitness exploratory individuals) and PNFO (remaining indi-
viduals) influence the addition or deletion of edges through
positive and negative factors (PF , NF). These structural
changes are quantified using the metric countones . The mod-
ified exploratory sub-population is then merged with the
superior sub-population and passed to the next generation,
as shown in Line 17 of Algorithm 1. Following this, both
parent and offspring populations are re-ranked, and the least

fit individuals are eliminated to maintain selection pressure
and solution quality, as described in Lines 16-17. Then, the
best individuals are retained based on AP , and the remain-
ing ones are refined through the feedback mechanism for the
subsequent iteration, as described in Lines 18–21 of Algo-
rithm 1. This iterative process continues until FE reaches the
maximumFunction Evaluation (max FE), at which point the
algorithm terminates and outputs the optimal individual, as
shown in Lines 22-23. The structure learning process for the
KC graph is illustrated in Fig. 3, and the fitness definition
aligns with prior work [20].

3.3 Time and Space Complexity Analysis

TheMAS-KCLalgorithm involves iterative operations includ-
ing individual generation, structure evaluation, ranking, and
LLM-based feedback. Its computational costmainly depends
on the number of knowledge components n. Each iteration
involves D = n · (n − 1)/2 = (n2 − n)/2 structure compar-
isons, along with fixed overheads and three LLM API calls,
leading to a per-iteration cost of O(n2−n+3cAP I +ct ).With
a total of maxFE/N iterations, the overall time complexity
is:

T (n) = O

(
maxFE

N
·
(
n2 − n + 3cAP I + ct

))

= O(n2 − n + a)

In terms of space, the algorithm maintains structural
encodings of all individuals, each of size D = (n2 − n)/2.
Including auxiliary storage, the space complexity is S(n) =
O(n2−n+cs). Here, maxFE denotes themaximum number
of fitness evaluations, N is a constant representing the popu-
lation size, and n denotes the number ofKCs. cAP I represents
the waiting time for LLM responses through API calls, while
ct , cs , and a are all constants. These results show that MAS-
KCL exhibits quadratic time and space growth with respect
to the KC graph size.

123



MAS-KCL: knowledge component graph structure learning…

Algorithm1:Multi-Agent System forKnowledgeCom-
ponent Graph Structure Learning
Input: AP (Ambient Pressure), OD (Optimization Direction)
Output: best individual and its loss

1 Initialize the population randomly;
2 EF ← 0;
3 while EF < maxEF do
4 Generate offspring population by DE operator;
5 O f f Pop ← sort([O f f Pop, OD]);

// Sort individuals in the offspring
population according to OD.

6 O f f Pop ← {(AP) ∗ N [Psup], (1 − AP) ∗ N [PEX ],
N [PEL ]};
// Divide the offspring population into

superior and exploratory, and
elimination sub-populations.

7 Establish bidirectional feedback mechanism;
8 PEX ← sort([PPFO , PNFO ];

// Sort exploratory sub-populations.
9 foreach i ∈ {PPFO , PNFO } do

10 NewEdges ← O f f Pop(1, i).dec - Pop(1, i).dec;
11 count_ones ← count_ones + NewEdges;

// Record the new edges of the
exploratory sub-population for the
current population.

12 Multiply the vector of the newly added edge by the Positive
Factor;

13 Multiply the vector of the newly added edge by the Negative
Factor;

14 foreach i ∈ {PPFO , PNFO } do
15 O f f Pop(1, i).dec is modified by adding or deleting

edges based on count_ones;

16 sort{Fitness(Pop), Fitness(O f f Pop)};
// The fitness of the offspring

population was compared with the
current one.

17 Pop(replace) ← O f f Pop(replace);
// Sub-population with lowest fitness is

eliminated, and the remaining
sub-populations are retained.

18 Pop([PSU P ], [PEX ] ← O f f Pop{(AP) ∗ N , (1− ap) ∗ N };
// A portion of superior population will

enter the next iteration. The
exploratory population will undergo a
bidirectional feedback mechanism
operation.

19 AP ← Game Agent decision;
20 PF ← Positive Feedback Agent decision;
21 NF ← Negative Feedback Agent decision;
22 FE ← FE + N ;

23 return best individual and its loss;

4 Results

4.1 Experimental setup

4.1.1 Educational datasets

The experiments in this study are mainly conducted using
datasets from theNeurIPSCausalMLChallenge and theXue-
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tangX platform, both of which are suitable for the task of
knowledge component graph structure learning. A total of
9 datasets are used in this research, including 5 synthetic
datasets and 4 real-world datasets. Detailed descriptions of
the datasets are provided below according to their respective
sources.

• Learning Path Recognition-Generate Datasets (LPR-
GDs) [9]: The LPR-GDs series datasets are provided
by the NeurIPS CausalML Challenge: Causal Insights
for Learning Paths in Education. This series includes
five generated datasets-LPR-GD1 to LPR-GD5-which
contain data on the causal relationships among KCs in
the domain of mathematics. Although there exists a gap
between synthetic and real-world data, the LPR-GDs
datasets arewell-suited for the preliminary validation and
rapid testing of KC graph structure learning methods.

• LearningPathRecognition-RealWorldDatasets (LPR-
RWDs) [8]: The LPR-RWDs series datasets provided
by Microsoft Research Cambridge and Eedi. The LPR-
RWDs include three real-world datasets of varying
scales: LPR-RWD,LPR-RWD1, andLPR-RWD2. These
datasets are constructed from real-world educational data
provided by Eedi, an online education company reg-
istered in England and Wales. The LPR-GDs series
datasets represent learning data collected from real learn-
ers engaged in mathematics education, making them

123



Y.-H. Jiang et al.

well-suited for thoroughly evaluating the generalizability
of KC graph structure learning methods.

• MOOCCubeX-Math [42]: XuetangX is one of the
largest MOOC platforms in China. The MOOCCubeX
dataset is collected on the XuetangX platform, which
provides partially annotated and algorithmically pre-
dicted prerequisite relationships between concepts [43].
By treating the concepts defined in MOOCCubeX as
KCs, we can obtain real-world data suitable for the task
ofKCgraph structure learning. Specifically, we extracted
MOOCCubeX-Math from the 331,202 mathematics-
related JSON records provided by MOOCCubeX and
performed data cleaning based on the methodology in
[30], in order to further evaluate the generalizability of
the proposed approach.

4.1.2 Baseline algorithms

In this study, we compare our proposed algorithm, MAS-
KCL, against four representative baseline algorithms: Multi-
Stagemulti-objective Evolutionary Algorithm (MSEA) [34],
GoldenEagleOptimizer (GEO) [24],EliteEvolutionStrategy-
basedHarris HawkOptimization algorithm (EESHHO) [11],
and Adaptive Geometry Estimation-based Many-Objective
EvolutionaryAlgorithm II (AGE-MOEA-II) [25]. The selected
methods exhibit diverse characteristics, making them suit-
able for a comprehensive comparison and evaluation of the
proposed MAS-KCL from multiple perspectives. Our selec-
tion was guided by the recommendations in [20], fromwhich
MSEA, GEO, and EESHHOwere adopted. Additionally, we
includedAGE-MOEA-II, a recently proposed algorithmwith
strong theoretical foundations, to further validate the effec-
tiveness of the proposed LLM-driven approach.

It is worth noting that the parameter settings for all com-
parison algorithms were either derived from their original
papers or based on the default configurations provided by
the Platform for Evolutionary Multi-objective Optimization
(PlatEMO) [33]. The hyperparameters of the comparison
algorithms are listed in Table 1. It should be noted that AGE-
MOEA-II [25] is not included in Table 1 because it does not
contain adjustable parameters.

4.1.3 Implementation details

The experiments were primarily conducted on a machine
equipped with an Intel i5-13600KF @ 3.50GHz dual-core
processor, 32GB of RAM, and an NVIDIA RTX 4070 GPU.
The software environment included MATLAB 2022b and
the PlatEMO platform [33]. Additionally, the online tool
Chiplot.online was used for part of the data processing and
visualization in this study. Following previous work, we
employed the loss metric to evaluate the performance [20].

4.2 Comparison experiments on real-world datasets

This subsection compares the MAS-KCL with four algo-
rithms on real-world datasets. To reduce the impact of
random factors, each algorithm was run at least three times
for each dataset. The results are shown in Table 2, where
lower loss indicates better performance.

Table 2 presents the results on four real-world datasets:
MOOCCubeX-Math, LPR-RWD, LPR-RWD1, and LPR-
RWD2, with problem sizes D of 210, 6670, 1225, and 1225,
respectively. The results for each algorithm are reported as
the average loss values obtained through multiple indepen-
dent runs. As shown in this table, LPR-RWD exhibits the
highest loss among the three LPR-RWDs series datasets
due to its largest problem size, making optimization more
challenging. Meanwhile, the MOOCCubeX-Math dataset is
relatively sparse, which leads to poorer performance across
most algorithms compared to the other datasets. Overall, the
EESHHO algorithm consistently delivers second-best per-
formance across all datasets, while the proposed MAS-KCL
achieves the best results in every case, demonstrating its
effectiveness in the task of KC graph structure learning.

4.3 Generalization comparison on generated
datasets

To further evaluate the generalization capability of the pro-
posed method, we conducted additional comparison experi-
ments on the generated datasets. Specifically,MAS-KCLwas
compared against the best-performing baseline algorithm
identified in Sect. 4.2. The results on five generated datasets-
LPR-GD1 to LPR-GD5-are presented in Table 3. Consistent
with the results observed on real-world datasets, MAS-KCL
achieves the best performance across all generated datasets.
On average, MAS-KCL reduces the loss by 5.51%, with
the greatest improvement observed on LPR-GD3, where the
reduction reaches 7.71%. These results confirm the strong
generalization ability of the MAS-KCL on both real-world
and generated datasets.

4.4 Generalization sensitivity of MAS-KCL to LLMs

Since MAS-KCL integrates LLMs to enhance its decision-
making process, we conducted a comparative study to
analyze its generalization performance under different LLM
versions. As shown in Table 4, we compared two GPT mod-
els developed by OpenAI (GPT−4.0 and GPT−3.5) with
two alternativeLLMs (LLaMA-70BandClaude-3-7-Sonnet-
20250219) on four real-world datasets. The results show that
the GPT models consistently outperform the other LLMs
across all datasets. Notably, GPT−3.5 performs better on
smaller-scale datasets such as MOOCCubeX-Math, while
GPT−4.0 exhibits superior performance as the problem size
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Table 1 Parameter settings of
all algorithms

Algorithm Parameters

GEO [24] APmin = 0.5, APmax = 2.0, CPmin = 1.0, CPmax = 0.5

EESHHO [11] Ub = 1, Lb = 0

MSEA [34] Fmax = 1, Fmin = 0

MAS-KCL PF = 0.6, NF = 0.4, AP = 0.4

This table presents the algorithm parameters used in the simulation experiments

Table 2 Comparison of loss (Mean ± SD) for five algorithms on four real-world datasets

Real-world dataset Algorithm
Dataset D MSEA GEO EESHHO AGE-MOEA-II MAS-KCL

MOOCubeX-Math 210 7.37e-1 (5.35e-3)[-] 6.46e-1 (4.08e-2)[-] 2.57e-1 (4.95e-2)[-] 7.28e-1 (6.15e-3) [-] 2.51e-1 (7.61e-2)

LPR-RWD 6670 4.84e-1 (1.78e-3) [-] 3.44e-1 (3.95e-5)[-] 3.43e-1 (2.76e-4)[-] 4.81e-1 (2.72e-3) [-] 3.31e-1 (1.30e-3)

LPR-RWD1 1225 4.13e-1 (4.36e-3)[-] 2.72e-1 (2.06e-3)[-] 2.71e-1 (1.59e-3)[-] 4.11e-1 (4.16e-3) [-] 2.23e-1 (4.23e-3)

LPR-RWD2 1225 4.43e-1 (8.90e-3)[-] 3.34e-1 (2.15e-4)[-] 3.21e-1 (1.12e-2)[-] 4.42e-1 (1.04e-2) [-] 2.65e-1 (1.40e-2)

+/=/– – 0/0/4 0/0/4 0/0/4 0/0/4 –

Symbols "+", "=", and "–" indicate performance relative to the proposed method; the best and second-best results are shown in bold and italic,
respectively

Table 3 Comparison results on
the generated datasets

Algorithm Dataset Statistic
LPR-GD1 LPR-GD2 LPR-GD3 LPR-GD4 LPR-GD5 Mean SD

MAS-KCL 26.99 26.13 27.30 29.19 28.85 27.69 1.29

Baseline 32.81 31.00 35.01 33.87 33.30 33.20 1.48

Δloss ↓ 5.82 ↓ 4.87 ↓ 7.71 ↓ 4.68 ↓ 4.45 ↓ 5.51 ↓ 0.19

We compare the baseline with the proposed MAS-KCL on five datasets (LPR-GD1 to LPR-GD5) in terms of
loss (%). The symbol ↓ indicates the percentage reduction in loss achieved by MAS-KCL compared to the
corresponding baseline. For each method, the mean and standard deviation are reported

increases, as seen in the LPR-RWD dataset. On average, the
use of GPT models reduces the loss by 5.79% compared to
other LLMs, demonstrating their strong compatibility with
the MAS-KCL framework.

Based on these observations, we suggest the following:
GPT−3.5 should be prioritized for small-scale datasets;
GPT−4.0 ismore suitable for large-scale scenarios to achieve
optimal results.WhenGPTmodels are not available, LLaMA
serves as a viable alternative, offering the lowest standard

deviation among all models, which indicates better stability-
albeit at the cost of some performance. These findings offer
valuable insights into selecting LLMs for integration with
MAS-KCL in different application contexts.

4.5 Ablation experiments

To assess the contribution of the LLM-based multi-agent
system to algorithm performance, we conducted an abla-

Table 4 The loss results of
MAS-KCL integrated with
different versions of LLMs on
real-world datasets

LLM Dataset Statistic
MOOCubeX-Math LPR-RWD LPR-RWD1 LPR-RWD2 Mean SD

GPT−4.0 25.12 33.08 22.31 26.47 26.75 4.57

GPT−3.5 19.58 33.55 23.14 26.23 25.63 5.94

Claude 48.49 33.91 25.44 30.16 34.50 9.95

LLaMA 27.99 33.93 25.88 30.04 29.46 3.43

Δloss ↓ 15.89 ↓ 0.61 ↓ 2.94 ↓ 3.75 ↓ 5.79 ↓ 1.21

For each dataset, the best-performing and second-bestmethods are highlighted in bold and italics, respectively.
The table also reports the mean and standard deviation for each method, with consistent formatting applied.
The symbol ↓ indicates the average loss reduction achieved by GPT models (GPT−4.0 and GPT−3.5)
compared to other variants
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Table 5 Ablation results of MAS-KCL with respect to the entire multi-agent system and each individual agent

Real-world dataset Algorithm
Dataset D MAS-KCL (-GA) MAS-KCL (-PFA) MAS-KCL (-NFA) MAS-KCL (-MAS) MAS-KCL

LPR-RWD 6670 3.39e-1 3.42e-1 3.40e-1 4.43e-1 3.31e-1

LPR-RWD1 1225 2.49e-1 2.46e-1 2.55e-1 3.35e-1 2.23e-1

LPR-RWD2 1225 3.00e-1 3.15e-1 3.15e-1 3.60e-1 2.65e-1

Mean – 2.96e-1 3.01e-1 3.03e-1 3.79e-1 2.73e-1

Δloss – ↑ 2.30% ↑ 2.80% ↑ 3.03% ↑ 10.63% –

Here, (-GA), (-PFA), (-NFA), and (-MAS) denote the removal of the Game Agent, Positive Feedback Agent, Negative Feedback Agent, and the
entire LLM-based multi-agent system, respectively. For each dataset, the best-performing and second-best methods are highlighted in bold and
italics, respectively. ↑ indicates an increase in loss compared to the standard MAS-KCL

Fig. 4 Results of ablation experiments on the multi-agent system com-
ponent inMAS-KCL. These results illustrate the variation in loss across
different real-world educational datasets. Specifically, the comparison
algorithm without the multi-agent system component is referred to as
MAS-KCL (-MAS), represented by triangles,while the standardMAS-
KCL is depicted by circles

tion study by removing the MAS component and evaluating
the results on the real-world LPR-RWDs series datasets, as
shown in Fig. 4. Through iterative optimization, the standard
MAS-KCL consistently achieved significantly lower loss
across all datasets compared to MAS-KCL(-MAS), which
excludes the multi-agent system component. These findings
demonstrate that integrating the multi-agent system compo-
nent improves the efficiency of KC graph structure learning.

To further investigate the impact of each agent, we con-
ducted a more fine-grained ablation study, and the results
are presented in Table 5. We observed that the removal of
any single agent led to an increase in loss, indicating that
each agent contributes positively to the KC graph structure
learning task. Specifically, removing the entire multi-agent
system resulted in a 10.63% increase in loss, while remov-
ing any single agent caused a rise of approximately 2%–3%.
Among all agents, the removal of the Negative Feedback

Fig. 5 Convergence analysis, which shows the convergence behavior and loss distribution of MAS-KCL. The centralized distribution of these
results validates the strong convergence capability of the proposed method
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Agent (NFA) led to the largest increase in loss, suggesting
that it plays the most critical role in algorithm performance.
This is likely due to its ability to identify and eliminate low-
quality edges between KCs. The Positive Feedback Agent
(PFA) showed the second most significant impact, as it pro-
motes the generation of high-quality edges through positive
reinforcement. These findings provide strong evidence for
the effectiveness of both the MAS as a whole and each of its
individual components.

4.6 Convergence experiment of MAS-KCL

This subsection analyzes the convergence of the proposed
MAS-KCL algorithm, which is a key measure of an algo-
rithm’s stability and effectiveness. In practical applications,
convergence ensures that, after sufficient computation or iter-
ation, the algorithm yields stable and consistent results. The
datasets used in the experiments include LPR-RWD, LPR-
RWD1, and LPR-RWD2. The results are presented in Fig. 5,
which shows the convergence behavior and loss distribution
of MAS-KCL. These results were derived from 30 indepen-
dent runs for each dataset. The boxplots below the x-axis
illustrate the distribution of the 30 runs, while the median
loss for each problem is indicated as the central value. The
ranking of loss from highest to lowest is consistent with ear-
lier results: LPR-RWD, LPR-RWD2, and LPR-RWD1.

For the LPR-RWD, the loss distribution is dense, despite
the dataset’s high dimensionality contributing to its relatively
high loss. The clear distribution patterns in Fig. 5 demon-
strate the stability and convergence of MAS-KCL across
different datasets.

5 Conclusion

To improve the efficiency and accuracy of KC graph struc-
ture learning and support learners in achieving their learning
goals, we propose the Multi-Agent System for Knowl-
edge Component graph structure Learning (MAS-KCL).
MAS-KCL incorporates multi-agent collaboration and a
bidirectional feedback system to optimize KC graph during
iterations by dividing the population based on loss values.
Experiments demonstrated the proposed algorithm’s effec-
tiveness on real datasets. By enabling rapid and accurate
KC graph structure learning path, the MAS-KCL algo-
rithm optimizes teaching strategies, enhances learning out-
comes, improves the quality of educational development, and
ensures sustainable progress in education.
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