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Figure 1: A schematic diagram of information fusion between student behavior information and grade time-series information.
Experimental results from this study demonstrate that using a simple average weighting for information fusion decreases the
accuracy of learning outcome predictions. However, the proposed Co-Evolutionary Optimization-based Information-fusion
Framework (CEO-IF) effectively addresses this issue by implementing effective information fusion.
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Abstract
Accurately and timely predicting learners’ outcomes can assist ed-
ucators in making instructional decisions or interventions. This
helps prevent students from falling into a vicious cycle of decreased
academic achievement and increased aversion to learning, poten-
tially leading to dropout. Data-driven models often outperform
eXplainable Artificial Intelligence (XAI) models in predicting learn-
ing outcomes, yet their lack of interpretability can hinder trust from
educators. Therefore, this study developed an XAI information fu-
sion framework that not only extracts potential trends from the
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time series of student grades to enhance predictive performance
but also mines explicit relationships between classroom behaviors
and learning outcomes. This reveals the behavioral causes behind
changes in grades. Furthermore, we have made public the Dataset
for Predicting Outcomes from Time sequences and Student behav-
iors (DPOTS), and validated the effectiveness of the developed XAI
information fusion framework based on DPOTS. The results indi-
cate that, the Mean Absolute Error (MAE) of CEO-IF was reduced
by an average of 26.32% compared to the baseline algorithms, and
it showed a 22.63% reduction compared to the averaging-based
information fusion method. The homepage for the project can be
accessed at https://doi.org/10.5281/zenodo.14958102.

CCS Concepts
• Human-centered computing→ Human computer interac-
tion (HCI); • Applied computing→ Education.
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1 Introduction
Ensuring inclusive and equitable quality education, as well as pro-
moting lifelong learning opportunities for all [11], is one of the Sus-
tainable Development Goals (SDGs) outlined in the United Nations
2030 Agenda for Sustainable Development [9, 17]. The emergence
of Artificial Intelligence (AI) technologies has catalyzed rapid trans-
formations in educational practices [22, 29], driving the accelerated
development of AI for Education (AIED) [21, 27, 30] and offering
viable pathways toward realizing this field [14, 16]. By predicting
learning outcomes, educators can identify students experiencing
academic difficulties and provide data-driven support for timely
interventions and instructional decisions [1]. Furthermore, adjust-
ing teaching strategies based on such predictions can enhance the
quality of instruction [43]. This approach also enables teachers to
diagnose students’ cognitive states [35, 49, 50], facilitating early
intervention and targeted support to help students overcome chal-
lenges.

To support teachers’ decision-making with robust data, eXplain-
able Artificial Intelligence (XAI) [13] has gained widespread appli-
cation in education, aiding educators in more accurately predicting
learning outcomes and performing detailed learning analysis. Nu-
merous XAI models have already been employed to identify factors
influencing learners’ performance [20, 48] and to assist teachers
in making instructional decisions based on learning analytics [53].
However, some studies indicate that XAImodels underperform deep
learning algorithms in certain learning outcome tasks [4, 7, 48],
particularly when dealingwith sequential data such as students’ per-
formance over time [13]. Thus, balancing the prediction accuracy

for learning outcomes with the transparency and interpretability of
models remains an urgent challenge as these AI technologies move
towards practical application in education.

This study seeks to accurately and partially explain the predic-
tion of learning outcomes using both grade time-sequence data
and student behavior data. We have developed a dataset that inte-
grates both performance time-sequence and student behavior, along
with corresponding information fusion methods, which are publicly
available. The key contributions of this paper are as follows:

• This study developed an information fusion framework that
balances the interpretability of the model with the accuracy
of predicting learning outcomes, termed the Co-Evolutionary
Optimization-based Information-fusion Framework (CEO-
IF).

• We developed the Dataset for Predicting Outcomes from
Time sequences and Student behaviors (DPOTS) using a large
language model-driven Agent Role Play approach, compris-
ing data from 100 students and four teachers totaling 4,720
entries. We havemade the developed DPOTS dataset publicly
available at https://doi.org/10.5281/zenodo.14958102 [24].

• We fused time-series grade information and student behavior
data for predicting learning outcomes. We found that typi-
cal weighted average information fusion methods reduced
prediction accuracy; however, our proposed fusion method
significantly improved it, as shown in Fig. 1.

In the remainder of this study, related work is introduced in Ap-
pendix A. Then, in Section 2, the proposed methods and dataset de-
tails are detailed, including the development of the DPOTS dataset.
Simulation experiments are conducted in Section 3 to validate the
superiority of the proposed information fusion method. Finally,
Section 4 summarizes the conclusions of this research.

2 Methodology
2.1 Development of the DPOTS Dataset

Supported by Agent Role Play
This study aims to predict learning outcomes by integrating grade
time-sequence data with student behavioral information. Specifi-
cally, we generate student behavioral data based on the CPS coding
framework [45], which provides a structured method for represent-
ing students’ behaviors in the classroom.The CPS coding framework
provides a comprehensive overview of student behavior, capturing
various aspects of their classroom conduct. Detailed information
can be found in Appendix B.

For teachers, we introduce the Classroom Atmosphere, Teaching
Level, Interactions with Students, and Frequency of Homework As-
signments (CTIF) framework to implement ARP for teachers [52].
These dimensions include teacher-student interactions, teaching
level, classroom atmosphere, and homework assignments [13]. Fig.
2 presents a case study of ARP for four teachers based on this frame-
work. As shown in Fig. 2, the four teachers display distinct teaching
levels, classroom atmospheres, and personal characteristics, all of
which impact students’ learning outcomes.

https://doi.org/10.1145/3706599.3721212
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Figure 2: ARP for 4 teachers based on the CTIF framework. Based on this framework, AI agents can more realistically simulate
teachers’ behaviors and make differentiated actions during the teaching process.

2.2 Information Fusion Framework CEO-IF
In order to enhance the accuracy of learning outcome predictions
while improving the transparency and interpretability of algorithms,
we propose a novel information fusion framework, denoted as CEO-
IF. This framework integrates performance time-sequence data with
student behavioral data to predict learning outcomes, correspond-
ing to the performance time-sequence model and the behavior
representation model within the CEO-IF framework. The proposed
framework represents an improvement over the Collaborative Struc-
ture Search Framework (CSSF) [36] and the Differential Evolution
algorithm based on the Transdifferentiation Strategy (DE-TS) [25].
It combines the advantages of CSSF in handling multi-subgroup
information fusion with the superior generalization capabilities of
DE-TS in addressing complex tasks. This methodology enhances the
interpretability of the model while maintaining high prediction ac-
curacy, thereby offering valuable support for informed instructional
decisions.

The overall framework for information fusion is depicted in
Fig. 3. Initially, student behavioral data (encoded as CPS) are input
into the DT model. Concurrently, historical academic performance
data are fed into an LSTM model to extract features of student
information across two dimensions: behavioral patterns and perfor-
mance trajectories. Subsequently, the information fusion process
begins. Following population initialization, the number of function
evaluation counts, 𝐹𝐸, is set to zero. The DE algorithm generates
subpopulations which are then ranked according to fitness values

and divided into three sub-populations: a superior sub-population,
an exploration sub-population, and an eliminated sub-population.
The developed CEO-IF algorithm selects the number of individu-
als from the superior sub-population to proceed to the next itera-
tion based on the parameter 𝐴𝑃 . The exploration sub-population
undergoes individual optimization of offspring, supported by the
transdifferentiation strategy [25]. The eliminated sub-population
is directly discarded. The algorithm merges the offspring with the
parental population and sorts them, retaining only the individuals
with higher fitness values. After completing an iteration, the evalua-
tion count is incremented. This process repeats until the maximum
number of function evaluations,𝑚𝑎𝑥𝐹𝐸, is reached, at which point
the algorithm terminates and returns the optimal individual, 𝐼𝑏𝑒𝑠𝑡 .
Based on 𝐼𝑏𝑒𝑠𝑡 , the predicted students’ learning outcomes from
the CEO-IF framework can be calculated and utilized to support
instructional decision-making by teachers. Due to the proposed
CEO-IF information fusion method being based on evolutionary
computation rather than deep learning, it inherently possesses
lower complexity and computational requirements.

3 Experiments and Results
3.1 Experimental Setup and Dataset Analysis
To facilitate subsequent information fusion operations, we first
applied the standard DT and LSTM models to learn the learning
behavior representation data and performance time-sequence data,
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Figure 3: Overview of the CEO-IF information fusion frame-
work. The developed information fusion framework encom-
passes four key components: data input, feature extraction,
information fusion, and educational applications.

respectively, in preparation for the fusion operations and result
comparisons. Initially, the DT model is used to train student be-
havioral features (i.e., CPS encoding). Subsequently, the historical
performance data from 25 students in each class are organized, and
predictions are made for each class. The LSTM model is then used
to predict student performance by analyzing the historical perfor-
mance time-sequence data of all students. The comparison of final
test scores with predicted scores will be presented in the subsequent
content of this chapter. In Table 1, we present an overview of the
entire dataset. The detailed information about the experimental
setup and parameter settings can be found in the Appendix D.

3.2 Comparison of Information Fusion Effects
In this section, we conduct a comparative analysis of the errors
between the predicted and actual scores for the four types of in-
formation discussed previously. The procedures outlined earlier
enable a more intuitive evaluation of the model’s performance in
prediction tasks. The comparison between the predicted and actual
values is illustrated in Fig. 4. By calculating the differences between
the predicted and actual values, we obtain the absolute errors.

Subfigures a-d in Fig. 4 present the prediction results for 𝑆𝐵𝐼𝑛𝑓 .,
𝑇𝑃𝐼𝑛𝑓 .,CEO-IF-based information fusion and the Averaging-based
information fusion method. Additionally, we introduce the Multi-
SubgroupCEO algorithm to facilitate the information fusion process,CEO-
IF-based information fusion. The mean errors for the four types of
information across each class are indicated. The prediction results
for student scores, derived from the absolute errors between the
predicted and actual values, are presented in the chart. The absolute
errors are arranged in ascending order, with most of the predicted
values in Classes 1-4 falling within the range of [0, 5]. However, the
rate of error growth accelerates in the later stages. When analyzing
the various types of information, 𝑆𝐵𝐼𝑛𝑓 . demonstrates relatively
strong performance in certain predictions, with some predictions in
each class exhibiting an absolute error of zero. However, larger er-
rors emerge later, with Class 4 displaying absolute errors exceeding
20. 𝑇𝑃𝐼𝑛𝑓 . performs poorly in Classes 1 and 4, with mean errors of
2.75 and 4.23, respectively. The figure illustrates that 𝑇𝑃𝐼𝑛𝑓 . has
the highest absolute error values in each class. The performance of
Averaging-based information fusion is moderate, with a moderate
error growth rate and average error values. Overall, it performs ade-
quately, but the maximum error values in Classes 1-3 are the lowest.
In Classes 1 and 4, the mean errors for Averaging-based information
fusion are slightly lower than those for 𝑆𝐵𝐼𝑛𝑓 . alone, while they
are the lowest in Classes 2 and 3. In the early stages, the absolute
error across Classes 1-4 are low, indicating good performance.

3.3 Interpretability Analysis
In this section, we focus on the decision tree model’s ability to ana-
lyze students’ behavioral characteristics and predict their academic
performance. A case study involving Student 1 and Student 3 from
Class 1.In a DT regression model, feature importance evaluates each
feature’s contribution to the model’s predictive ability. It reflects
the frequency with which each feature is used to split nodes or the
magnitude of information gain during the building models. Thus,
feature importance allows us to observe the varying influence of
different features. The feature importance analysis quantifies the
contribution of each feature to the model’s predictive outcomes. Fig.
5 displays a partial decision tree structure for Class 1, where the
two most important features are "Builds on others’ ideas to improve
solutions" and "Does not respond when spoken to by others", as
indicated by the black boxes.

3.4 CEO-IF Information Fusion Analysis
In this section, we analyze the underlying reasons for the supe-
rior performance of the CEO-IF framework. The absolute error
values for 100 students are visualized using a box plot, followed



Explainable Learning Outcomes Prediction CHI EA ’25, April 26–May 01, 2025, Yokohama, Japan

Data Type Dimension Data Count Data Type Dimension Data Count
CTIF 4 16 CPIPIP 6 600
Number of Tests 1 4 CPS 16 1600
Score Data 25 2500 Total - 4720

Table 1: Overall framework of the DPOTS dataset.
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ascending order to display the growth rates of errors for different methods. Each subplot includes a horizontal line indicating
the mean absolute error for each method, with the specific numerical value labeled to the right of the line.
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Figure 5: Case analysis of interpretability. The figure presents a partial decision tree structure for Class 1, where academic
performance is predicted through regression based on students’ behavioral characteristics.
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Figure 6: Comparative analysis of results for the CEO-IF information fusion framework. Subfigure (a) presents boxplots of
the error distributions using different types of information fusion methods. Subfigure (b) shows the results of the Friedman
test ranking for error distributions at the class level, while subfigure (c) displays the Friedman test ranking for the standard
deviations at the class level.

by a detailed analysis. Additionally, Fig. 6 examines the predic-
tion results for all students, and compares the outcomes of differ-
ent prediction methods: CEO-IF-based information fusion, 𝑆𝐵𝐼𝑛𝑓 .,
Averaging-based information fusion, and 𝑇𝑃𝐼𝑛𝑓 . A Friedman test
is conducted to compare and rank each prediction scenario, and the
standard deviation of error distribution across the class dimension
is also evaluated.

As depicted in Fig. 6 (a), the data distribution for CEO-IF-based
information fusion is relatively concentrated. Compared to 𝑇𝑃𝐼𝑛𝑓 .
and Averaging-based information fusion, its box position is closer
to 0, with the data distribution focused in the [0,5] range. This
indicates that, following weighted information fusion, the predic-
tive performance has improved relative to traditional prediction

methods. However, some outliers remain present. From the infor-
mation in Fig. 6 (b), it is evident that CEO-IF-based information
fusion ranks the highest, indicating that it provides more accurate
predictions. The ranking of the remaining models is as follows:
𝑆𝐵𝐼𝑛𝑓 ., Averaging-based information fusion, and 𝑇𝑃𝐼𝑛𝑓 ., with the
latter two ranked equally. As shown in Fig. 6 (c), although the stan-
dard deviation for Averaging-based information fusion is relatively
low, it is essentially achieved by averaging the errors from DT and
LSTM. This suggests that Averaging-based information fusion dis-
tributes errors more evenly across different classes. However, when
compared to CEO-IF, Averaging-based information fusion exhibits
higher overall error values. Therefore, CEO-IF outperforms both
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LSTM and DT in terms of standard deviation, maintaining lower
errors while balancing interpretability and predictive accuracy.

We further analyzed the error data. Specifically, the Mean Ab-
solute Error (MAE) of the CEO-IF was compared against that of a
baseline algorithm by dividing the MAE of CEO-IF by the MAE of
the baseline and then subtracting the result from 100% to quantify
the percentage reduction in MAE achieved by our proposed method.
Subsequently, the average MAE of all comparison algorithms was
calculated to determine the overall percentage reduction in MAE
achieved by CEO-IF compared to the average of the baseline al-
gorithms. Similarly, the MAE of the CEO-IF information fusion
technology was divided by the MAE of a averaging-based informa-
tion fusion approach, and the result was subtracted from 100% to
calculate the percentage reduction in MAE of our proposed fusion
method relative to the averaging-based fusion method. The results
indicate that, in the task of predicting student learning outcomes,
the MAE of CEO-IF was reduced by an average of 26.32% com-
pared to the baseline algorithms, and it showed a 22.63% reduction
compared to the averaging-based information fusion method.

4 Limitations
This study developed a multi-agent-based synthetic dataset, DPOTS
[24], which encompasses structured data on student behaviors and
performances. Although existing educational frameworks such as
CTIF and CPS guided the simulation process of the multi-agents, it
is undeniable that behavior simulations supported by LLMs might
limit the generalizability of our findings due to potential devia-
tions from real-world scenarios. On the one hand, collecting and
constructing the corresponding real-world datasets could further
validate the effectiveness of the proposed method, although it is
more time consuming and challenging compared to generating
data via LLMs. On the other hand, researching how to better align
LLMs with human values could mitigate this issue to some extent,
representing an intriguing research direction that we are currently
pursuing. Furthermore, this study also engages in discussions and
experiments surrounding the topic of interpretability. While the
case study results presented in this research can assist educators
in understanding the potential factors influencing student perfor-
mance, it is undeniable that qualitative or quantitative research on
interpretability would be beneficial to this study.

5 Discussion and Conclusion
This study introduces the DPOTS dataset, which is designed to
predict student learning outcomes and identify influencing factors.
The dataset is constructed using AI agents generated by large lan-
guage models, which characterize teachers and students. Based
on this dataset, this paper proposes the CEO-IF framework, which
integrates student behavioral information and performance time-
sequence data to balance interpretability and prediction accuracy.
The experimental results demonstrate that the proposed infor-
mation fusion framework outperforms methods that rely solely
on either behavioral information or academic performance time-
sequence data, leading to a reduction in prediction errors within
a certain range. By examining the factors that influence student
learning outcomes, educators can improve instructional design.
Simultaneously, students can gain insight into areas of weakness

within the subject matter through performance predictions. This
research provides valuable guidance for identifying students at
risk of poor academic performance, optimizing teaching methods,
enhancing education quality, and fostering the development of
personalized intelligent education. Future research will focus on
further optimizing learning outcomes, with an emphasis on person-
alized teaching, to contribute to the high-quality development of
education.
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A Related Work
A.1 Prediction of Learning Outcomes
Student learning outcomes serve as critical indicators of both stu-
dents’ learning capabilities and the quality of education. As such,
the assessment of learning outcomes is a fundamental task in edu-
cational research [19]. Learning outcomes are influenced by a range
of factors, including non-academic elements [3], the educational
environment [41]. Some studies have employed Decision Trees(DT)
to analyze these factors, identifying key determinants that impact
learning outcomes, thus providing a foundation for prediction. In
recent years, deep learning approaches have been integrated into
learning performance research, yielding improved prediction re-
sults. The LSTM model, a specialized variant of RNN, enhances the
capacity to process long-term dependencies and has been widely
adopted for predicting learning outcomes [7]. LSTM also has been
utilized to assess students’ time-series behavioral data [12] and
predict those at risk of failure [10]. Therefore, achieving a balance
between interpretability and grade time-sequence data represents
a significant challenge in enhancing the practical applicability of
these models.

A.2 Agent-based Simulation and Datasets
The increasing prominence of AI agents has led to the expanding
application of agent-based models across various scenarios [27],
relying on the autonomy, collaboration, and adaptability of these
agents [28]. The emergence of multi-agent simulations and associ-
ated datasets is primarily driven by the need to simulate real-world
scenarios to address the issues that arise within these contexts.
Generative AI technologies, such as multi-agent systems, have en-
hanced interactive applications by simulating human behavior and
generating credible individual and emergent social actions, as ex-
emplified by Stanford’s Town model [39]. Agents are employed
to identify uncertainties and complexities across various domains.
In macroeconomics, agents are used to overcome constraints by
simulating human decision-making processes in economic environ-
ments, thus addressing pressing challenges [34]. The multi-agent
systems across diverse fields, through scenario simulations, pro-
vides viable solutions to real-world problems.

A.3 Educational Applications of Large
Language Models

In recent years, large language model (LLM) technology has ad-
vanced rapidly and become increasingly prevalent in the field of
intelligent education [26]. AI agents, generated by LLMs, have
the capacity to simulate real-world classroom scenarios, thereby
transforming traditional educational models [38]. Recent studies
have proposed the design of instructional AI agents, addressing
key aspects such as functionality, programming, and structural
design, while providing examples of their application in educa-
tional settings [32]. LLMs observe AI agents’ interactions within
the classroom, enhancing the student learning process [54]. This
paper utilizes LLMs to generate AI agents for both teachers and
students, simulating real classroom scenarios to address potential
challenges and predict students’ learning outcomes.

B Development of the DPOTS Dataset
Supported by Agent Role Play

To simulate student behavior, we employ AI agents to capture
the frequency of occurrence of each event within the CPS coding
framework over specific time intervals. The developed DPOTS
dataset includes 100 students, distributed evenly across four classes,
each consisting of 25 students, as show in the Fig. 7. These four
classes are taught by different instructors. By predicting student
behavior based on real-world personality traits, the AI agents offer
valuable insights for assessing learning outcomes.

Additionally,the generation of student grades is influenced by
a variety of factors, including student behavioral traits, personal
characteristics, teaching style, and the teaching level of the instruc-
tor. By providing detailed information about each student and their
corresponding teacher to AI agents, these agents are able to analyze
the student’s behavior, learning habits, and the teacher’s instruc-
tional style, which collectively determine the student’s performance.
Furthermore, the AI agents offer a detailed analysis process and
provide an explanation for the reasons behind the generated grades.
A portion of this explanation is depicted in Fig. 8 .

C Information Fusion Framework CEO-IF
Metaheuristic algorithms are renowned for their powerful global
search capabilities and adaptability [2, 15], making themwell-suited
for solving complex problems [33]. They have been applied in di-
verse fields, including production control [23, 37, 40, 47], circuit
design [8, 51], and drug design [5]. The CEO-IF algorithm intro-
duced in this paper is based on a multi-subgroup co-evolutionary
strategy to fuse the predictive results of performance time-sequence
and behavior representation models. The offspring population gen-
erated by this process is divided into three segments. Through
multi-subgroup co-evolutionary search, each subgroup employs a
different evolutionary strategy, thereby avoiding the limitations
associated with a single search strategy and improving computa-
tional efficiency. The specific steps are as follows: the offspring
population is divided into superior sub-pupulation, exploration
sub-pupulation, and eliminated sub-pupulation based on individual
fitness values. The number of superior sub-pupulation advancing
to the next iteration is determined by the parameter 𝐴𝑃 , which is
calculated as 𝐴𝑃 · 𝑁 , where 𝑁 is the population size after iteration.
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If you are a student, your condition is as follows: Pre-class study habits are diligent, in-class study habits are engaged, post-class study habits are reflective, 
conscientiousness in assignments is meticulous, interaction with the teacher is courteous, and personality is analytical. Your teacher is Ms. Smith. Her 
interactions with students are supportive and approachable, her teaching habits are innovative and dynamic, her teaching level is advanced, and her 
classroom atmosphere is engaging and collaborative. Please, according to the above data, generate a table of 25 students who may do the following: 
propose specific solutions, talk about the givens and constraints of a specific task, build on others' ideas to improve solutions, confirm understanding by 
asking questions or paraphrasing, repair misunderstandings, not respond when spoken to by others, make fun of, criticize, or be rude to others, provide 
reasons to support or refute a potential solution, talk about results, bring up giving up the challenge, not visibly focus on tasks and assigned roles, initiate off-
topic conversation, join off-topic conversation, ask if others have suggestions, ask to take action before anyone on the team, and compliment or encourage 
others.

Sure, here is the behavior occurrences for the students:

Behavior occurrences Student1 Student3 Behavior occurrences Student1 Student3

Proposes specific solutions 4 2 Talks about results 4 2

Talks about givens and constraints of 
a specific task 4 1 Brings up giving up the challenge 1 5

Builds on others' ideas to improve 
solutions 4 2  Not visibly focused on tasks and 

assigned roles 2 4

Confirms understanding by asking 
questions/paraphrasing 4 1 Initiates off-topic conversation 3 5

Repairs misunderstandings 3 1 Join soff-topic conversation 3 5

Does not respond when spoken to by 
others 1 5 Asks if others have suggestions 3 1

Makes fun of, criticizes,or is rude to 
others 1 5 Asks to take action before anyone on 

the team 4 1

Provides reasons to support/refute a 
potential solution 4 1 Compliments or encourages others 4 1

Figure 7: Student behavior information based on the CPS coding framework. AI agents are used to simulate students, generating
student behavior information for each individual based on the CPS coding framework and their personal characteristics.The
case in the figure only lists some key dimensions of behavioral information.

1. Study Habits:
• Pre-class: Lack of preparation likely affects performance.
• In-class: Calmness helps focus, but doesn't compensate for other issues.
• Post-class: Lackadaisical may not suffice without solid preparation.

2. Conscientiousness and Interaction:
• Approach: Casual attitude towards assignments leads to lower quality work.
• Interaction with Teacher: Carelessness in communication hinders support and clarification.

3. Learning Style:
• Low scores in engagement (e.g., proposing solutions, confirming understanding) show minimal participation.
• High scores in negative behaviors (e.g., not responding, making fun) indicate a lack of focus and 

collaboration.
Overall, his grades reflect a combination of inadequate preparation, disengagement, and a lack of constructive 
interaction, which prevent him from achieving higher scores.

  Q:   Can you explain why the   
         score is this?

A: Certainly! Here are the test score generated based on the provided student's personality and the teacher's 
attributes: The student's grades can be explained by several factors:

1. Study Habits:
• Pre-class: The student is diligent in preparation, leading to better understanding.
• In-class: A serene attitude helps maintain focus and engagement during lessons.
• Post-class: Reflective habits reinforce learning and retention of material.

2. Conscientiousness:
The student is thorough in completing assignments, which contributes to higher quality work and grades.
3. Learning Style:

• Strong collaborative skills are evident, as the student excels in proposing solutions and confirming 
understanding with peers. This active engagement promotes deeper comprehension.

• While there are areas of lower engagement (e.g., not responding or initiating off-topic conversations), the 
overall strengths balance these out.

Overall, these elements work together, allowing the student to perform consistently well across multiple tests.

WHY

  Q:   Can you explain why the   
         score is this?

A:  Certainly! The student's high score can be attributed to a combination of strong study habits, effective 
learning style, and a supportive classroom environment. Here’s a breakdown of the contributing factors:

Figure 8: Explanation of grade generation. Students and teachers engage in role-playing as agents based on theCPIPIP framework
and the CTIF framework, respectively. At the same time, student agents generate student behavior data based on the CPS
coding framework. The AI agents use these information to generate the students’ grade time-sequence data and provide an
explanation for the grade generation process.
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Algorithms Parameters
DT 𝐷𝑇𝑟𝑒𝑒𝑀𝑎𝑥𝐿 = 50, 𝐷𝑇𝑟𝑒𝑒𝑀𝑎𝑥 = 10
LSTM 𝑇𝐸 = 200, 𝐼𝐿𝑟𝑎𝑡𝑒 = 0.001, 𝐵𝑆 = 32
CEO-IF 𝐴𝑃 = 0.2, 𝑂𝐷 = 0

Table 2: Parameter settings.

A larger value of AP results in more superior sub-pupulation ad-
vancing to the next iteration, thereby accelerating the process of
iteration. The number of exploration sub-pupulation is calculated
as (1−𝐴𝑃) ·𝑁 . After selecting individuals with higher fitness values
for the differentiation transfer strategy, they proceed to the next
iteration, while the eliminated subgroup is discarded and cannot
advance further.

D The Details of the Experimental Setting
The dataset used in this study is the DPOTS dataset, developed
specifically and publicly available on the project’s homepage. It in-
cludes both student behavioral data and performance time-sequence
data [24]. All experiments are conducted on a device equipped with
a dual-core Intel i7-7600U@2.80GHz processor. The hardware envi-
ronment comprised 16GB of RAM and an Intel HD Graphics 620
GPU, while the software platform utilized for algorithm implemen-
tation is Matlab 2020b. Additionally, some of the visualizations in
this paper are generated using tools available on chiplot.online.

To validate the effectiveness of the proposed information fusion
method, we used a Decision Tree model [46] to learn the correla-
tion between behavioral representation data and learning outcomes.

This method, a classic approach in XAI [42], follows the parameter
settings as described in [44]. Additionally, an LSTM model [6] is
used to learn the correlation between performance time-sequence
and learning outcomes, with parameters based on the settings from
[18, 31]. Finally, we employed the proposed CEO-IF information
fusion framework concurrently, and provided the parameter com-
binations used in the methods. These settings were established
based on the literature [25, 36]. These parameter combinations
were applied and validated in the contexts of learning path identifi-
cation [36] and control system management [25], demonstrating
the effectiveness of these configurations.

Specific hyperparameters are detailed in Table 2. In the DT
model, ’𝐷𝑇𝑟𝑒𝑒𝑀𝑎𝑥𝐿 ’ set to the Maximum Number of Leaf Nodes,
and ’𝐷𝑇𝑟𝑒𝑒𝑀𝑎𝑥 ’ set to the Maximum Depth of the Tree. In the
LSTM model, ’𝑇𝐸’ denotes the number of Training Epochs, ’𝐼𝐿𝑟𝑎𝑡𝑒 ’
is the initial learning rate, and ’𝐵𝑆 ’ refers to the batch size.

The LSTM layer consists of 50 hidden units, and a batch size of
32 is selected to ensure smoother training. An initial learning rate
of 0.001 is used, which is a widely accepted default and yields satis-
factory results in most training scenarios. The CEO-IF framework
is implemented on version 4.6 of the PlatEMO platform, where ’𝐴𝑃 ’
represents ambient pressure, ranging from [0,1]. PlatEMO is a plat-
form for the research and application of evolutionary optimization
algorithms.
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