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ARTICLE INFO ABSTRACT

Keywords: Large language models (LLMs) have demonstrated excellent performance in various natural language tasks.
Large language model However, in practical applications, LLMs frequently exhibit hallucinations, generating content that deviates
Hallucination

from instructions or facts, especially in complex reasoning tasks. Existing research has simulated real human
behavior by utilizing multi-agent debate, voting, and review, enhancing the model’s reasoning capabilities.
However, simple multi-agent systems have not accomplished the progressive verification of all reasoning steps.
Additionally, the issues of unstable response quality and the continuous learning ability of agents have not
been addressed. Therefore, in this work, we propose a Multi-agent Collaborative Filtering framework (MCF) in
the form of cross-examination among agents. This aims to cross-verify each step while filtering and selecting
the highest-quality responses from the response space. Additionally, to enable agents to achieve continuous
learning capabilities, this paper proposes methods for the automated construction and efficient retrieval
of the experience repository. Extensive experiments on ten reasoning datasets of three types (Arithmetic,
Commonsense, and Symbolic) indicate that MCF can enhance the diversity of large language models, overcome
hallucinations, and filter out effective responses in a rich response space. Moreover, the improvement of agents’
reasoning capabilities through the experience repository is also verified. Compared to the state-of-the-art, the
method proposed in this paper shows superior performance.

Multi-agent
Collaborative filtering

simulate human mutual competition through multi-agent systems. In
Multi-Agent Debate (Du, Li, Torralba, Tenenbaum, & Mordatch, 2024)
and ChatEval (Chan et al., 2023), each agent has a unique perspective
that is broadcasted to other agents. In subsequent rounds of reasoning,
each agent updates its view by incorporating the perspectives of others
along with its own. Alternatively, simpler voting-based method (Wang
et al., 2022) are employed. However, these methods generate all steps

1. Introduction

The emergence of large language models (LLMs) marks a significant
breakthrough in natural language processing technology. It exhibits
excellent performance in traditional tasks such as language under-
standing, text generation, and reasoning, and demonstrates outstanding
adaptability in handling open-domain tasks (Luo, Xie, & Ananiadou,
2024; Yang et al., 2024). However, in practical applications, LLMs

often generate content inconsistent with real-world facts or user input
instructions, a phenomenon known as “hallucination” (Ji et al., 2023).
This poses a substantial challenge to the practical deployment of large
language models and reduces their reliability y.

To enhance the reasoning capabilities of models, several studies
have replicated human step-by-step deduction strategies. For exam-
ple, Wei et al. (2022) requires LLMs to think “step by step”. Least-
to-Most (Zhou et al., 2022) and Zero-shot PS+ (Wang et al., 2023)
specifically investigate paradigms for task decomposition. Other studies

and answers in a single inquiry, without using the content of the
previous step as input for the next. Moreover, the aforementioned
studies do not address the hallucination problem in language models.
Therefore, several challenges remain: (1) The validity of each step
in the reasoning process is not verified, leading to the continuous
accumulation of errors. (2) The random sampling strategy results in the
unstable quality of LLMs’ output responses, with no strategy for filtering
high-quality responses. (3) Successful reasoning experiences are not
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A chef is creating a special recipe requiring 60% of a spice blend, which itself is
30% of a 1400g stock. The task is to calculate the precise amount of spice needed.

Options: A) 450g, B) 100g, C) 252g, D) 240g, E) None of these.

L2

L2

Instruction: Please calculate the precise amount

of spice needed for the special recipe.

Input: The spice blend is 30% of the 1400g stock.
T

Instruction: Calculate the total weight
of the spice blend needed for the recipe.
Input: 1400g (weight of the stock)

L2 L 2

Solution: To calculate the precise
amount of spice needed for the
special recipe, we can use the
following formula:

Spice needed = (1400g x 30%) / 100
Spice needed = 420g

Answer: 420g

Next request.

Solution: To calculate the precise
amount of spice needed for the special
recipe, following steps: 1.Determine
the amount of spice blend needed:

30% of 1400g = 1400g x 0.3 = 420g;
2.Calculate the amount of spice needed:
420g / 60% = 420g / 0.6 = 700g
Answer: 700g

O— B

Next request.
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Instruction: Please convert 420g to
grams. Calculate the amount of the
spice blend needed for the recipe.
Input: None (no input required)

Instruction: Calculate the amount of the spice blend
needed for the recipe. Can you please use the same formula
as before and tell me the amount of spice blend needed?
Input: The spice blend is 60% of the total spice needed.

)

¥

Solution: To calculate the amount of the spice blend
needed for the recipe, we can use the following formula:
Spice blend needed = (Spice needed x 60%) / 100 =

(420g x 60%) / 100 = 252g
Answer: C) 252g
Next request.

Solution: To calculate the amount of spice blend
needed for the recipe:

Spice blend needed = (1400g x 60%) / 100 = 840g
Answer: 840g.

Next request: Please confirm if this answer is
correct.

g

5| sjs]]]aNuia)a)a) ) Gas o
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<TASK_DONE>
Answer: C 252g
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Fig. 1. 32 different reasoning trajectories are represented in a tree structure. The root node represents the task that needs to be solved. Sibling nodes are two different responses
in the same context. Each node represents a response from the agent, with red nodes indicating adversarial responses. The bar chart in the upper right corner follows the MCF
paradigm, calculating the total similarity of trajectories with adversarial instances at each step (see Section 3.2). Green samples represent correct trajectories, while orange samples
represent incorrect trajectories. The horizontal axis represents the trajectory sequence number, and the vertical axis represents the total similarity. It is evident that the total

similarity of correct trajectories is consistently lower compared to incorrect trajectories.

fully utilized, and the model’s reasoning ability cannot be optimized
during the continuous problem-solving process.

To address these issues, multi-agent systems are employed to fa-
cilitate cross-examination at each reasoning step. Additionally, the
temperature and top-k sampling strategies in large language models
introduce a certain degree of randomness in the text generation process.
As shown in Fig. 1, we sampled twice in the response space for each
step, ultimately obtaining 32 different solution paths to the problem,
of which only 12 answers were correct. This indicates that for the
same input, the responses of LLM are diverse, encompassing a large
response space, with varying quality. To stably output high-quality
responses, this paper proposes a Multi-agent Collaborative Filtering
(MCF) framework utilizing cross-examination. Each role includes N
normal instances and one adversarial instance. Normal instances are
used to activate the response space, while the adversarial instance
serves as a reference for calculating similarity during collaborative
filtering. However, simply calculating the similarity of two responses
in the feature space cannot measure the coherence of the current
response, and it also lacks an understanding of sentence structure and
keywords (Bai, Chen, Song, & Zhang, 2021). Therefore, the similarity
calculation method not only considers the impact of historical dialogues
but also incorporates the Abstract Meaning Representation (AMR) of
the text.

Additionally, to provide agents with referable examples during the
reasoning process, this paper simulates human continuous learning
abilities and constructs an automatically updating experience repos-
itory. This repository exclusively utilizes the reasoning processes of
historical tasks, thereby avoiding the quality issues associated with
open-source data and the costs of manual experience repository con-
struction. Consequently, agents can obtain effective references when
encountering similar problems. Additionally, a Z-score-based outlier
retrieval method is introduced to prevent the retrieval of unrelated
issues.

In summary, the major contributions of this paper are as follows:

» We proposed a Multi-agent Collaborative Filtering (MCF) mech-
anism, aiming to fully activate the response space while select-
ing the most accurate solution among various possible options

through the adversarial agent. MCF also reduces the probability
of hallucinations during the decision-making process through
multiple rounds of cross-examination.

We simulate real usage scenarios, and an experience repository is
constructed from scratch. When facing new tasks, successful sim-
ilar experiences can be referenced, greatly enhancing the success
rate of problem-solving. Moreover, the proposed Z-score outlier
retrieval method further avoids the negative impact of retrieving
irrelevant experiences.

We conducted extensive experiments on ten public inference
datasets of three different types to deeply explore the operation
mechanism of the proposed method. The superior performance
compared to existing methods demonstrates the effectiveness and
advancement of this work.

2. Related work

First, this section reviews the related work on In-context learn-
ing. Subsequently, we list a series of related works on multi-agent
collaboration, tool augmentation, and retrieval augmentation.

2.1. In-context learning

In-context learning has become a crucial approach for enhancing
the performance of language models (Min et al., 2022). This method
guides the model’s behavior through contextual information provided
during the feedforward computation process, including prompts, in-
structions, and examples (Kirsch, Harrison, Freeman, Sohl-Dickstein, &
Schmidhuber, 2023). Among these, Few-shot learning (Brown et al.,
2020; Snell, Swersky, & Zemel, 2017; Wang, Yao, Kwok, & Ni, 2020) is
a fundamental strategy that helps the model understand the format and
expected output of new tasks by providing a few number of examples.
It leverages the model’s existing knowledge to facilitate learning from
these examples and generalizing to new task instances. However, when
handling complex reasoning tasks, directly outputting answers often
results in deviations from user instructions or factual inaccuracies.
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Therefore, some methods emulate the human thought process in
problem-solving by breaking down complex issues into smaller, more
manageable parts. CoT (Kojima, Gu, Reid, Matsuo, & Iwasawa, 2022)
guides the model to provide answers and demonstrate the reasoning
process leading to those answers, explicitly outputting the intermedi-
ate steps. The primary distinction between Manual-CoT (Wei et al.,
2022) and Auto-CoT (Zhang, Zhang, Li, & Smola, 2022) lies in the
construction of prompts for guiding the model’s reasoning. Manual-CoT
relies on manually constructed prompts, while Auto-CoT automates
this process, reducing the need for human intervention. Furthermore,
Least-to-Most (Zhou et al.,, 2022) and Zero-shot PS+ (Wang et al.,
2023) extend beyond simple “step-by-step” approaches by thoroughly
studying task decomposition strategies. However, fundamentally, these
methods still obtain answers in a single inquiry and do not use the
outputs of preceding steps as inputs for subsequent steps.

2.2. Multi-agent collaboration

The introduction of multi-agent systems explicitly allocates different
roles in the task reasoning process, enabling a divide-and-conquer
approach. The CAMEL framework (Li, Hammoud, Itani, Khizbullin, &
Ghanem, 2024) focuses on “Communicative Agents for ‘Mind’ Explo-
ration” within large language model societies. By setting up agents with
different identities, it solves complex tasks through cross-examination.
Similarly, ChatDev (Qian et al., 2023) achieves software system devel-
opment by employing agents with distinct task objectives, thus avoiding
the hallucination issues associated with directly generating entire code
using LLMs.

Furthermore, some research employs agents with the same objec-
tives to obtain different results from LLMs for the same problem. For in-
stance, Multi-Agent Debate (Du et al., 2024) and ChatEval (Chan et al.,
2023) enhance decision-making and reasoning abilities by introducing
structured debates among agents, leveraging both the competitive and
cooperative aspects of debates. This method improves the knowledge
base and decision-making process by having agents argue and critically
evaluate different positions, making it particularly suitable for tasks
requiring detailed understanding and assessment of complex informa-
tion. Self Consistency (Wang et al.,, 2022) emphasizes maintaining
consistency across various tasks and long-term interactions, ensuring
that the actions and decisions of intelligent agents are aligned with their
goals and the information they process. This is crucial for ensuring the
reliability and predictability of agent systems. However, these studies
do not systematically address how to activate the response space of
LLMs in the same context and how to select the most appropriate
response.

From this perspective, this paper proposes a multi-agent collabo-
rative filtering method to explore the response space while selecting
high-quality responses.

2.3. Tools & retrieval-augmented generation

In addition to leveraging the inherent capabilities of large language
models (LLMs), significant research has utilized open tools and data to
enrich generated content. ReAct (Yao et al., 2023) is a paradigm that
integrates reasoning and acting, using LLMs to interleave the generation
of reasoning traces and task-specific actions, thereby enhancing their
synergy. Reasoning traces help the model induce, track, and update
action plans as well as handle anomalies, while actions allow it to
interact with external sources (such as knowledge bases or the web)
and gather additional information. These methods (Qiao et al., 2024;
Shinn, Cassano, Gopinath, Narasimhan, & Yao, 2024) not only enable
the model to generate more accurate reasoning traces but also facilitate
interaction with external information and tools, thereby improving the
model’s performance in specific tasks.

Retrieval-Augmented Generation (RAG) (Guu, Lee, Tung, Pasupat,
& Chang, 2020; Lewis et al., 2020) plays a crucial role in this context.
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The core concept of RAG is to utilize large external data corpora to
assist the generation process, allowing the model to dynamically extract
relevant information while constructing responses. The study by Cheng
et al. (2024) introduces additional memory capabilities, enabling LLMs
to handle and recall a broader range of contextual information, which
not only deepens the model’s understanding of the current task but also
supports the handling of complex queries. This idea is further expanded
in RARR (Gao et al., 2023), which, through a dual-step process of
retrieval and revision, ensures consistency between the output content
and the retrieved evidence by using external data during both the
generation phase and subsequent evaluation and adjustment steps. Self-
RAG (Asai, Wu, Wang, Sil, & Hajishirzi, 2023) combines these concepts,
optimizing the entire process of information acquisition and utilization
through iterative retrieval, generation, and critique. This approach en-
hances the model’s knowledge base with external datasets and ensures
that the generated content is both accurate and highly relevant to the
context through critical evaluation of the retrieved information.

However, the experience repository constructed in this study ini-
tially covers a limited range of task categories, and directly retrieved
experiences may not be relevant to the task. This issue was not ad-
dressed in the previous work. Therefore, a Z-score outlier retrieval
method is proposed to prevent the negative impact of returning ir-
relevant experiences when no similar experiences are available in the
repository.

3. Method

In this chapter, the paradigm of the agent dialogue framework is
first introduced, detailing how agents solve problems through dialogue
(see Section 3.1). Then, the MCF is proposed to reduce the impact of
hallucinations in the agent decision-making process (see Section 3.2).
Finally, a dynamically updated experience repository with a Z-Score-
based outlier retrieval method is introduced into MCF, enabling agents
to summarize and index experiences (see Section 3.3).

3.1. Agent dialogues

Directly requesting the agent to output the complete problem-
solving process and answer, in a single inquiry, often leads to severe
hallucination issues (Azamfirei, Kudchadkar, & Fackler, 2023). The
occurrence of such hallucinations is influenced by multiple factors.
For instance, the lack of fine-grained descriptions of the task (Qian
et al., 2023), the absence of cross-examinations (Cohen, Hamri, Geva,
& Globerson, 2023), or being limited to the perspective of a single
role (Ezzini, Abualhaija, Arora, & Sabetzadeh, 2022). Therefore, this
paper introduces an agent dialogue framework, allowing agents to con-
duct cross-examinations during the decision-making process to mitigate
the potential impact of hallucinations and increase the probability of
successfully solving the task.

Inspired by works such as Li et al. (2024) and Qian et al. (2023),
the agent dialogue framework in this paper is set as follows: (1) First,
before the dialogue begins, the Task Specifier provides a more detailed
description of the initial task, enhancing its granularity while construct-
ing a vivid task background. (2) Then, the detailed task description is
simultaneously passed to the User and the Assistant. The User serves as
a task planner, engaging in interactive planning to determine feasible
steps for the Assistant to execute. Meanwhile, the Assistant acts as a
task executor, offering solutions, executing planned steps, and provid-
ing responses to the User. (3) Finally, the dialogue is initiated by the
User and ends when the User gives the <TASK DONE> command. The
tested tasks are resolved through multiple rounds of dialogue.

As shown in Fig. 2, we have set different system prompts for the
User and the Assistant, including role information, task requirements,
and response formats. Formally, it can be represented as follows:

A<F* v <R @



J. Shi et al.

—( Task Specifier Prompt:

Here is a task that Teacher will help Student to complete: <TASK>
Please make it more specific. Be creative and imaginative.

Please reply with the specified task in 50 words or less.

Do not add anything else.
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—{ User System Prompt:

Never forget you are a Teacher and I am a Student. Never flip roles!

—{_ Assistant System Prompt: ~N

Never forget you are a Student and I am a Teacher. Never flip roles! Never instruct me!

c3
terest in collaborating
ly complete a task.

to successful

I must help you to complete the task.
Here is the task: <SPECIFIED TASK>. Never forget our task! You must instruct me based on
my expertise and your needs to complete the task ONLY in the following two ways:

1. Instruct with a necessary input: Instruction: <YOUR_INSTRUCTION>
Input: <YOUR_INPUT>

2. Instruct without any input: Instruction: <YOUR_INSTRUCTION>
Input: None

The "Instruction" describes a task or question. The paired "Input" provides further context or
information for the requested "Instruction”.

You must give me one instruction at a time. /

I must write a response that appropriately completes the requested instruction.

I must decline your instruction honestly if I cannot perform the instruction due to physical,
moral, legal reasons or my capability and explain the reasons.

You should instruct me not ask me questions.

Now you must start to instruct me using the two ways described above.

Do not add anything else other than your instruction and the optional corresponding input!
Keep giving me instructions and necessary inputs until the task is completed.

When you believe I have provided the final answer to the task, you should always start with:
<TASK_DONE>
Answer: <TASK_ANSWER>

K<TASK7ANSWER> is the final answer.

to successfully complete a task.

We share a common interest in collaborating
You must help me to complete the task.

Here is the task: <SPECIFIED TASK>. Never forget our task! I must instruct you based on
your expertise and my needs to complete the task.

I must give you one instruction at a time.

You must write a sp c solution that
appropriately completes the requested
instruction.

You must decline my instruction honestly if you cannot perform the instruction due to physical,
moral, legal reasons or your capability and explain the reasons.

Do not add anything else other than your solution to my instruction.

You are never supposed to ask me any questions you only answer questions.

You are never supposed to reply with a flake solution. Explain your solutions.

Your solution must be declarative sentences and simple present tense.

Unless I say the task is completed, you should always start with:

Solution: <YOUR_SOLUTION>

<YOUR_SOLUTION> should be specific, and provide preferable implementations and
examples for task-solving.

Always end <YOUR_SOLUTION> with: Next request.

Note: When you believe the current method can calculate the correct answer, please provide
what you consider the correct answer.

Answer: <YOUR_ANSWER>
Do not add anything else in your answer.

Fig. 2. The system prompt for different agents. The initial task <TASK> is specified by the task specifier into <SPECIFIED TASK> and is then passed to both the User and the
assistant. For the normal User and the adversarial User, only part of their system prompts differ. The green section is for the normal User, while the yellow section is for the
adversarial User. Similarly, for the normal assistant and the adversarial assistant, only part of their system prompts differ. The green section is for the normal assistant, while the

yellow section is for the adversarial assistant.

Among them, P, is the system prompt for the Assistant, and P;.
is the system prompt for the User. F; and F, are the large language
models used by the Assistant and User, respectively.

After the roles are assigned, the User and Assistant engage in
dialogue around the task. Formally, we denote the user instruction
message obtained at time ¢ by 7, and the assistant solution by S,.
The set of conversational messages obtained up until time ¢ is denoted
by Eq. (2) shown below:

M, ={Ty, Sp), - (T, S} = {T;1, SHY iy @

At the next time ¢ + 1, the User U takes the historical conversa-
tion message set M, and provides a new instruction 7,,;, as shown
in Eq. (3). The produced instruction message 7, is then passed, along
with message set M,, to the Assistant .A. The Assistant will then
respond with a solution, denoted by S, in Eq. (4):

1 =UM,), 3

St = AWM, Ty ). 4

After obtaining the solution S, to the instruction 7, , the message
set is updated using Eq. (5) to obtain M, :

Mg = MU T Sip)- ()

3.2. Multi-role collaborative filtering

The cross-examination method enforces the necessary steps in the
problem-solving process, which can alleviate the hallucination that oc-
curs when outputting all answers at once (see Section 4.3.3). However,
the issue of output variance due to the random sampling strategy of
the Decoder architecture (Radford, Narasimhan, Salimans, Sutskever,
et al.,, 2018) still exists. When facing the same problem, the agent
may give multiple different responses, which include both high-quality
and low-quality responses. When low-quality responses are output,

“hallucinations” also appear (Ji et al., 2023). Therefore, a Multi-agent
Collaborative Filtering framework (MCF) is proposed, shown in Fig. 3.
By setting up more agent roles with the same goals, the response
space of the LLM is fully activated. Subsequently, by calculating the
semantic similarity and AMR graph matching degree between normal
and adversarial responses, the response with the highest probability of
being correct is filtered out.

The foundation of collaborative filtering lies in similarity the-
ory (Goldberg, Nichols, Oki, & Terry, 1992; He et al., 2017). We
consider customers as agents, and their behaviors as responses of these
agents. Assume the response of User U, is I, while responses from
other different Users U; = {V,}V | are 7, = {Z,}V . According to simi-
larity theory, it is straightforward to infer that I;, which is most similar
to 7., will also share properties similar to those of I,. Consequently,
the specific form of the Multi-agent Collaborative Filtering framework
(MCEF) is as follows.

In the MCF, more Users and Assistants are configured to collect
as many different responses as possible under the same input. Pa-
rameter investigation experiments regarding the number of roles N
are discussed in Section 4.2.1. Taking User as an example, the MCF
includes N Users with identical settings, meaning they receive the exact
same system prompts. Additionally, there is one User instructed to
intentionally provide incorrect answers, referred to as the adversarial
User. This can be formally represented as follows:

Ul «— FPV,

oL Uy < FY v < F (©)

here, ! P denotes the system prompt that instructs intentionally mis-
leading responses (see Fig. 2).

At any time f, each User independently responds based on the
dialogue content M,_; from time ¢—1, resulting in the set of instructions
at time {7;'} }’L . UZ,’. Subsequently, each instruction in the set is fed into
the Embedding model E and the AMR model G to obtain corresponding
semantic vectors and AMR Graphs. Then, the cosine similarity in the
feature space between the erroneous instruction and the nth normal
instruction is computed. Formally, this can be expressed as:
E1" - E1))

Cos(E(I)), E(I))) = ————,
IEE)IETDI

)
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Fig. 3. (1) The top of the image shows the pipeline of the MCF. Both the User and the Assistant have N normal instances and one negative instance. All normal instances maintain
the same settings and output what they believe to be the correct responses. The negative instance is required to deliberately output incorrect responses. (2) The bottom left of the
image is a schematic diagram of the AMR Graph. (3) The bottom right of the image shows the process of calculating the similarity of different responses. AMR converts the text
into the corresponding graph structure, and Embedding converts the text into vectors. The incorrect response is used as a reference to calculate the similarity with other normal

responses.

here, E(ZI”)-E(Z;) represents the dot product of vectors E(I]') and E (It’),
where || - || denotes the norm of a vector. Furthermore, considering
historical context helps to eliminate ambiguity within a single text,
and we further explore the similarity between different responses in
a complete context. Therefore, the expression for cosine similarity is
updated to the following form:

Cos(E(I"), E(1))) =

E(I! - E(I)

IEEDINEE)I

EM, | +I")-EM,_, +1)) (8)
IEM,_y + IOIEWM,_, + IHI

The matching degree of Z;' and Ir’ in AMR graphs are calculated
using the following formula:

Mat(G(1"). G(1})) =
\triples(G(IM)  triples(G(I))] ©)
3 £
ltriples(G(IM)| + |triples(G(T))|

here, G(-) represents the AMR Graph of the instruction. triples(-) de-
notes the set of all triples in the AMR graph, and [triples(-)| indicates
the number of triples in the AMR graph.

The overall similarity D between the incorrect instruction and the
nth normal instruction is calculated as:

= Cos(E(I"), E(1))) + Mat(G(I"), G(1))). 10)

Finally, the instruction with the minimum overall similarity degree
is selected as the most likely correct instruction at time ¢, which is then
passed to the Assistant. This can be formally represented as:

1, = argmin,{D} },I,V=1 11

3.3. Experience repository for MCF

However, in open environments, agents often need to handle tasks
one after another like assembly line workers. This means that if agents

cannot summarize effective experiences from past task-solving expe-
riences, they will need to repeat reasoning when facing similar tasks
again, consuming a large amount of resources. At the same time,
successful experiences also help agents understand new tasks, alleviate
their cognitive illusions and decision-making illusions about tasks, and
further improve their performance (Shi et al., 2024; Wan, Liu, Mcke-
own, Dreyer, & Bansal, 2023). Naturally, agents should have the ability
to summarize and index effective experiences. This paper stores past
effective experiences in a structured experience repository and retrieves
the experience repository in the form of RAG (Guu et al., 2020). The
specific method is as follows:

This paper first simulates real usage scenarios and evaluates the
problem-solving process, using Feedback. For the convenience of ex-
perimentation, the more powerful language model GPT-4-Turbo is used
to replace real humans for judgment and to provide Feedback. When
positive Feedback is perceived, the process of solving tasks M, will
be stored in a repository R in a retrievable dictionary format {task
description, solution process, question answer}. It should be noted
that receiving positive feedback does not mean the answer is correct,
no ground truth will be provided in any experiments.

When encountering a new task, if len(R) > I, the Task Specifier
retrieves from the experience repository R based on the overall simi-
larity between task descriptions. Here, / is the initial dimension of the
experience repository available for use, and the parameter investigation
experiments can be found in Section 4.2.2. The calculation method for
overall similarity is the same as Egs. (8) and (9). The retrieved results
will be provided as references to all Users and Assistants in the MCF
(see Algorithm 1).

The retrieved results consist of task description, solution process,
and question answer. These results are first transformed into a coher-
ent text format: “There is now a task similar to the current one, <task
description>. The solution process for this task is as follows: <solution
process>, and the resulting answer is <question answer>". This text is
then concatenated with the <SPECIFIED TASK> output by the Task
Specifier, forming a new <SPECIFIED TASK>, which is subsequently
embedded into the system prompts of both the User and the Assistant.



J. Shi et al.

Algorithm 1 Experience repository updates and retrieval

Require:
The current task, denoted as <TASK>; the set of users, represented by
U, and the set of assistants, denoted by .4; the repository of experiences,
indicated by R

Ensure:
Summarization and Indexing of Experiences

1: procedure RetriEVE(<TASK>, R)
2 reference = None # initial reference experience
3 if len(R) > I then

4: max=0 # the current maximum similarity
5: for i =1 to len(R) do

6 # SIM(), calculate similarity

7 if max < SIM(<TASK>, R[i][Task]) then
8 max = SIM(<TASK>, R[i][Task])

9 reference = R[i][Task]

0: return reference

—_

11: procedure DiaLoGue(<TASK>, reference, U", A)

12: # SPE(), detailed description of the current task

13: <SPECIFIED TASK> « SPE(<TASK>)

14: # DIA(), users and assistants infer tasks through dialogue.
15: M=TASK>  DIA(<SPECIFIED TASK>,reference, U, A)

16:  return M<TASK>

17: procedure Store(M<TAK> R)

18: # GET(), get feedback from the humans or LLMs
19:  feedback «— GET(M<TASK>)

20: if feedback is positive then

21: # STR(), structure current task and solutions.
22: dict «— STR(<TASK>, M<TASK>)
23: R.append(dict)

However, we find that when the experience repository is not com-
prehensive, the retrieved tasks that are most similar to the current task
may be completely irrelevant. Such completely irrelevant experiences
may instead have a negative impact on solving the current task (Zhang
et al., 2022). To overcome the above problem and avoid interference
from non-homologous tasks in the experience repository, this paper
proposes an outlier retrieval method based on Z-score. This method
enables even a smaller-scale experience repository to play a positive
role. Specifically, if there are indeed no similar tasks in the experience
repository, no references are used, and reasoning is conducted directly
within the MCF.

Assume that the current experience repository R has already stored
L experiences, which is greater than /. Then, when facing <TASK>, the
retrieval process is as follows:

Firstly, the current task and the tasks already existing in the ex-
perience repository are collectively represented as {7;} IL: o> Where 7
describes the current task <TASK>. Then, calculate the overall simi-
larity between each task 7; and other task 7}, obtaining the similarity
set D:

D= {dy.d,.....d. },
_ L 12
4= —— 3 Cos(E(T). E(T)) + Mat(G(T,). G(T)). (2
n= 17 ’ ’

Next, the Z-score of the average overall similarity d, corresponding
to <TASK> can be computed, namely:
dn -
zp = 0_”, (13)
(2

where u is the mean of D, and o is the standard deviation of D.

If z, > 4, then d, is considered an outlier in D. This means there is
no similar task experience of the same category in the current empirical
database. 4 is a hyperparameter, which will be discussed for its value
in Section 4.2.3.
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Table 1
Relevant information about the dataset used.

Domain Dataset Number Average words Answer format
MultiArith 600 31.8 Number
GSMB8K 1319 46.9 Number

Arithmetic AddSub 395 31.5 Number
AQUA-RAT 254 51.9 Multiple choice
SingleEq 508 27.4 Number
SVAMP 1000 31.8 Number

Commonsense CSQA 1221 27.8 Multiple choice
StrategyQA 2290 9.6 Yes/No

. Letter 500 15.0 String
Symbolic Coin Flip 500 37.0 Yes/No

4. Experiments

In this section, the datasets used and the specific experimental set-
tings will be first introduced (see Section 4.1). Following this, extensive
experiments on the hyperparameters involved were conducted to gain a
deeper understanding of the intrinsic workings of the proposed method
(see Section 4.2). Additionally, ablation studies on different modules
and comparative experiments with other methods were also performed
to further substantiate the effectiveness and superiority of this work
(see Sections 4.3 and 4.4).

4.1. Experimental setup

4.1.1. Datasets

As shown in Table 1, the experiments in this paper were evaluated
on ten reasoning datasets, which can be categorized as follows:

Arithmetic reasoning: MultiArith (Roy & Roth, 2015) represents
a collection of mathematics word problems necessitating multiple rea-
soning steps and operations; GSM8K (Cobbe et al., 2021) is a collection
of high-quality, linguistically diverse, grade-school mathematics word
problems crafted by human problem writers; AddSub (Hosseini, Ha-
jishirzi, Etzioni, & Kushman, 2014) consists of a series of addition and
subtraction mathematics word problems; AQUA-RAT (Ling, Yogatama,
Dyer, & Blunsom, 2017) offers a collection of mathematics word prob-
lems accompanied by natural language rationales; SingleEq (Koncel-
Kedziorski, Hajishirzi, Sabharwal, Etzioni, & Ang, 2015) encompasses
single-equation grade-school mathematics word problems, incorporat-
ing multiple mathematical operations on nonnegative rational numbers
and one variable; SVAMP (Patel, Bhattamishra, & Goyal, 2021) presents
a set of challenging mathematics word problems designed for students
up to grade 4, introducing simple variations to an existing dataset.

Commonsense reasoning: CSQA (Talmor, Herzig, Lourie, & Be-
rant, 2019) poses questions with complex semantics that frequently
necessitate reasoning based on prior knowledge; StrategyQA (Geva
et al., 2021) is a commonsense question-answering task that employs a
Yes or No format and requires models to engage in multi-hop reasoning
to arrive at the answers.

Symbolic reasoning: Last Letter Concatenation (Wei et al., 2022)
involves a task where the model concatenates the last letters of each
word; Coin Flip (Wei et al., 2022) aims to determine whether a coin
remains heads up after being flipped or not flipped by individuals.

4.1.2. Implementation details

Unless otherwise specified, the experiments in this article are con-
ducted using OpenAI’s GPT-3 (text-davinci-002 version with 175 billion
parameters) to power the intelligent agents. The nomic-embed-text-
v1 (Nussbaum, Morris, Duderstadt, & Mulyar, 2024) model is utilized as
the embedding model for text-to-vector conversion. AMR3-structbart-
L (Drozdov et al., 2022) is used to parse text into AMR graphs. The
degree of matching between two different AMR graphs is calculated
using the Smatch library (Cai & Knight, 2013). The hyperparameters
involved in our method are discussed in the parameter investigation.
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Fig. 4. Parameter investigation experiments were conducted on datasets MultiArith,
GSM8K, AQUA-RAT, and strategy. The horizontal axis of each subplot represents the
number of users and assistants. The vertical axis represents the values of temperature.
The darker the color of the squares above the subplot, the higher the accuracy achieved
under the corresponding parameters; the lighter the color, the lower the accuracy.

As presented in Table 1, this study utilizes ten datasets of varying
sizes. The StrategyQA dataset is the largest, comprising 2290 samples.
The GSM8K, SVAMP, and CSQA datasets are of moderate size, con-
taining 1319, 1000, and 1221 samples, respectively. The MultiArith,
SingleEq, Letter, and Coin Flip datasets are smaller, consisting of 600,
508, 500, and 500 samples, respectively. The AddSub and AQUA-RAT
datasets are the smallest, with 395 and 254 samples. For parameter
exploration, we selected four datasets based on their size: StrategyQA
(largest), GSM8K (moderate), MultiArith (smaller), and AQUA-RAT
(smallest).

4.2. Parameter investigation

4.2.1. Number of roles and model temperature

The temperature of large language models is a hyperparameter used
to adjust the diversity of the generated text. In the MCF, this diversity
can be stimulated by configuring multiple agents with the same objec-
tive to generate different responses to the same problem. To further
understand the operation mechanism of MCF, this paper conducts a
parameter investigation experiment on the number of roles N and
the model temperature settings. The specific experimental results are
shown in Fig. 4.

The best result on the MultiArith dataset is 92.7%, with a cor-
responding temperature of 0.8 and an agent count of 3. The worst
result is 86.5%, with a corresponding temperature of 0.1 and an agent
count of 2. The best result on the GSM8K dataset is 50.1%, with a
corresponding temperature of 0.8 and an agent count of 3, 4, and 6. The
worst result is 47.4%, with a corresponding temperature of 0.1 and an
agent count of 2. The best result on the AQUA-RAT dataset is 37.8%,
with a corresponding temperature of 0.8 and an agent count of 3, 4,
and 6. The worst result is 34.1%, with a corresponding temperature of
0.1 and an agent count of 2. The best result on the Strategy dataset is
67.1%, with a corresponding temperature of 0.8 and an agent count of
3 and 4. The worst result is 65.4%, with a corresponding temperature
of 0.1 and an agent count of 2.
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Fig. 5. The impact of the initial dimensions of the experience repository on perfor-
mance across the MultiArith, GSM8K, AQUA-RAT, and strategy datasets. Different colors
represent different datasets. The 4 positions on each line represent the results of agent
dialogues on that dataset. The A positions on each line represent the results of MCF
on that dataset.

Overall, a consistent regularity is observed across the four datasets.
For any N, as the temperature increases from 0.1, performance grad-
ually improves and reaches its peak at 0.8. When the temperature
continues to increase to 1.0, performance slightly decreases. This in-
dicates that at lower temperatures, even with multiple agents set, the
responses obtained are still single-faceted. Conversely, at excessively
high temperatures, the agents’ responses deviate from the instructions,
leading to performance degradation.

Furthermore, at different temperatures, the performance of N = 3 is
superior to N = 2, achieving the optimal results. When N continues to
increase, the performance shows slight variations, but not significantly.
This demonstrates that at an appropriate temperature, multiple agents
with the same objective can indeed stimulate the diversity of large
language models, resulting in a richer response space. Therefore, based
on the above results, this study suggests setting the temperature to 0.8
and the number of agents N to 3.

4.2.2. Initial dimension of the repository

To enable the Agent to summarize and index effective experiences,
the repository R is configured into MCF. However, when the repos-
itory is not comprehensive, the most similar task retrieved may be
completely unrelated to the current task. Such completely unrelated ex-
periences can negatively impact the solution of the current task (Zhang
et al., 2022). In other words, the initial dimensions / of the repository
when it is first used have a certain impact on performance.

As shown in Fig. 5, we conducted experiments on the MultiArith,
GSM8K, AQUA-RAT, and Strategy datasets. It can be observed that
when the repository is opened for use after accumulating 5 experiences,
the results obtained are significantly higher than those of Agent Dia-
logues across all four datasets. This indicates that enabling the agent
to summarize and index experiences can indeed alleviate the agent’s
hallucinations. However, the results are still lower than those achieved
by the MCF, which confirms that an inadequate repository can have
a counterproductive effect. When the initial dimension is gradually
expanded to / = 15, the performance on the two smaller datasets, Mul-
tiArith and AQUA-RAT, surpasses that of MCF. Further increasing the
initial dimension to 20 allows the experience pool to provide positive
assistance on GSMS8K, achieving significantly better performance than
the original MCF. Additionally, on the largest dataset, Strategy, the
results are basically consistent with those of MCF. This indicates that
the initial dimension of the repository is influenced by the size of the
dataset.

However, it is worth noting that when / is too large, its performance
will decrease again. We believe that as the initial dimension increases,
the effect of the repository will gradually diminish, ultimately making
the performance equivalent to that of the MCF. Based on the above
experiments, / is set to 20.
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Fig. 6. Performance of different A on datasets MultiArith, GSM8K, AQUA-RAT, and
strategy. In each subplot, the red dashed line represents the best results achievable
without using outlier detection methods.

4.2.3. Threshold value of Z-score

Fig. 6 investigates the threshold 4 in outlier retrieval. On MultiArith,
the optimal result of 94.3% was achieved when A = 1.5. The perfor-
mance was better than the original retrieval method when 4 =1,1.5,2;
on GSMBS8K, the best result of 51.3% was obtained when A = 1.5.
The performance was better than the original retrieval method when
A=1,1.5,2,2.5; on AQUA-RAT, the best result of 40.9% was achieved
when A = 2,2.5. The performance was better than the original retrieval
method when 4 = 1.5,2,2.5, 3; on Strategy, the best result of 68.6% was
obtained when A = 1.5. The performance was superior to the original
retrieval method when A =1,1.5,2.

Unlike its performance with the other three datasets, the outlier de-
tection method does not work well on the AQUA-RAT dataset when A is
set to a smaller value. Moreover, the optimal performance corresponds
to a larger 1. We believe this is influenced by the size of the dataset.
AQUA-RAT only has 254 samples, making its sample space relatively
sparse, so the best value for A is also larger. The impact of dataset size
on the value of 1 is also evident in the other three datasets, such as the
largest dataset Strategy, and the second-largest dataset GSM8K, where
4 values of 1 or 1.5 are clearly superior to 2.5, and 3.

Overall, in the three datasets mentioned above, when A = 1.5,2, the
performance is consistently better than the original retrieval methods.
This fully validates that the Z-score-based outlier retrieval can avoid
interference from dissimilar tasks in the empirical database, enabling
smaller empirical databases to also have a positive effect. Considering
the size of the other datasets in this paper, A is suggested to be 1.5 in
the proposed method.

4.3. Ablation study

4.3.1. Stability from MCF

Due to the impact of the random sampling strategy, agents with the
same settings may give completely different responses under the same
conditions. This further exacerbates the hallucinations and instability
of LLM-based agents. However, the proposed MCF can fully activate
the response space and filter out the optimal responses.

To verify the stability of MCF, the experiment shown in Fig. 7
was conducted. As can be seen, the gaps between the best and worst
results for Agent Dialogues on the MultiArith, GSM8K, and AQUA-
RAT datasets are 3.4%, 2.1%, 1.5%, and 1.1%, indicating that the
performance of Agent Dialogues is not stable. We found that reducing
the model’s temperature can make its output and performance more
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Fig. 7. The left figure shows the results of three tests of agent dialogues on the
MultiArith, GSM8K, AQUA-RAT, and strategy datasets. The right figure shows the
results of three tests of MCF.

stable, but this also closes off more possibilities (Chang, Reitter, Ak-
sitov, & Sung, 2023), which may include high-quality responses. On
the other hand, the gaps between the best and worst results for MCF
on the MultiArith, GSM8K, and AQUA-RAT datasets are 1.2%, 0.5%,
0.4%, and 0.2%, respectively. It is evident that MCF can fully utilize
the diversity brought by the random sampling strategy, filtering out
hallucinations while improving the agent’s performance.

4.3.2. Effectiveness of the AMR

In order to verify the effectiveness of the proposed similarity calcu-
lation method, Table 2 presents the relevant experimental results. It can
be observed that when only semantic similarity is used, MCF’s perfor-
mance across all datasets shows a significant improvement compared
to the baseline Agent Dialogues, with the average accuracy increasing
from 83.0% to 83.7%. This indicates that even relying solely on simple
semantic similarity can significantly enhance MCF’s reasoning ability.

After incorporating historical context, MCF’s performance further
improves, with the average accuracy reaching 83.9%. This suggests that
historical dialogue information can help the model better understand
the context in certain cases, especially when the historical information
is critical for reasoning. However, the overall improvement is limited,
indicating that the introduction of historical context does not contribute
equally to all tasks, and other information may need to be integrated
for further performance optimization.

Therefore, the AMR method was introduced, considering the role of
sentence structure and keywords. The AMR method achieved the best
results across all datasets, with the average accuracy rising to 84.7%,
which is an increase of 1.0% compared to the semantic similarity
method and an improvement of 1.7% over the baseline. This significant
improvement highlights the importance of advanced features such as
sentence structure and keywords in reasoning tasks.

In this experiment, semantic similarity, historical dialogues, and
the AMR method were introduced in sequence and progressively com-
bined, demonstrating the unique contribution of each method to the
performance of MCF. Semantic similarity significantly enhanced the
model’s basic reasoning ability, while historical dialogue information
further improved the model’s understanding of the context. However,
it was only after the introduction of the AMR method that the model’s
full potential was activated, significantly improving its performance on
complex reasoning tasks. Ultimately, the combination of these three
methods allowed the model to achieve optimal performance from
multiple dimensions.

4.3.3. Effectiveness of the experience repository

To further verify the effectiveness of the experience repository in
the MCF, this section visualizes the impact of an expanding reposi-
tory on performance across different datasets. Specifically, MultiArith,
GSM8K, AQUA-RAT, and Strategy are evenly divided into 10 groups.
For example, MultiArith has 600 samples, meaning each group has 60
samples. AQUA-RAT has 254 samples, so the first six groups each have
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Table 2
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Performance differences of MCF under different similarity methods. Semantic refers to directly computing the cosine similarity between the vectors of two text segments (see
Eq. (7)); Historical refers to incorporating the historical dialogues between agents (see Eq. (8)); AMR further considers the impact of sentence structure and keywords (see
Eq. (10)). The first row in the table does not use any similarity method, representing the results of the baseline Agent Dialogues. All experiments in this table were conducted

using GPT-3.5-Turbo-0613.

Method Arithmetic Commonsense Symbolic Average
Semantic Historical AMR MultiArith GSMS8K AddSub AQuA-RAT SingleEq SVAMP CSQA Strategy Letter Coin
96.7 78.2 89.4 62.6 93.7 81.7 77.7 68.3 83.4 98.4 83.0
v 97.2 79.0 89.6 63.4 94.9 83.0 77.7 69.0 83.8 99.0 83.7
v v 97.3 79.4 89.9 63.4 95.5 83.3 77.9 69.1 83.8 99.0 83.9
v v v 98.0 80.6 90.6 63.8 95.7 84.1 79.1 70.7 85.0 99.6 84.7

Numbers

3 oy y . r s
U I e e N P e
"

Grou
p
MultiArith GSMSK

......

Grous
Strategy

Fig. 8. The trend in the number of tasks correctly solved on the datasets MultiArith,
GSM8K, AQUA-RAT, and strategy. Each subplot’s horizontal axis represents different
sample groups, while the vertical axis indicates the number of samples. The green part
of the bars represents the correct samples, and the brown part represents the incorrect
samples. The numbers are markers for the count of correct samples.

25 samples, and the last four groups each have 26 samples. The number
of correct and incorrect samples in each group is recorded.

From Fig. 8, it can be seen that in the first set of 60 samples of Mul-
tiArith, 48 were correctly answered. In the second set, the number of
correct answers increased to 53. The growth trend gradually converges,
reaching up to 59 correct answers out of 60 samples. The same situation
was observed in GSM8K, AQUA-RAT, and Strategy. This indicates that
as the repository accumulates, the positive impact it provides to the
agents becomes increasingly stable.

Additionally, we observed that after the fifth group in MultiArith,
the sixth group in GSMB8K, the seventh group in AQUA-RAT, and the
eighth group in Strategy, the number of correct samples in each group
shows a clear convergence. We believe this is a reasonable phenomenon
because, without the use of ground truth, the assistance that the ex-
perience repository can provide is certainly limited. Furthermore, it is
important to note that the oscillations after convergence are considered
normal fluctuations caused by the varying difficulty levels of different
groups.

4.3.4. Performance on different LLM

To verify the robustness of the proposed method, different LLMs
were used as the core of the agents for experiments. As shown in
Table 3, when using LLAMA2-13B (Touvron et al., 2023), the results
with the MCF outperformed those with only the dialogue module across
ten different datasets. The average accuracy improved from 51.6% to
54.6%. With the addition of the repository module, performance was
further enhanced, achieving optimal results on all datasets, with the

average accuracy increasing to 55.7%. When the large language model
was switched to text-davinci-002, GPT-3.5-Turbo-0613, and GPT-4-
0613, the MCF also had a significant effect. Results on the ten different
datasets outperformed those using only the dialogue module, with
average accuracy improvements of 5.4%, 1.7%, and 1.7%, respectively.
The repository module remained strong, outperforming the former on
all ten datasets. The average accuracy further increased by 1.3%, 0.7%,
and 0.3%, respectively.

The stable improvements brought by the collaborative filtering and
the repository module fully demonstrate the effectiveness of different
modules. The stable performance improvement under different large
language models highlights the robustness of the proposed method.
Furthermore, we can also observe that the base model indeed has a
significant impact on the inference results; the stronger the base model,
the better the final outcome.

4.4. Comparative experiment

This paper compares the accuracy of the proposed method with
some existing methods on ten different types of reasoning datasets.
Zero-Shot (Kojima et al., 2022) directly asks the large language model
to answer the questions; Zero-Shot-CoT (Kojima et al., 2022) guides
the large language model to reason through specific prompts; Few-
Shot (Wei et al., 2022) requires the large language model to solve
the current task by referring to existing examples; Manual-CoT (Wei
et al., 2022) manually adjusts the reference examples to form a chain of
thought, further stimulating the reasoning ability of the large language
model. AutoCoT (Zhang et al., 2022) proposes a method for automat-
ically constructing reference examples and their chains of thought,
freeing human resources while further enhancing the model’s reasoning
ability. This paper constructs the problem-solving path through role
dialogue during cross-examination, and further optimizes the solution
method with multi-agent collaborative filtering. In addition, the dy-
namically updatable experience pool further improves the reasoning
efficiency for similar tasks. As shown in Table 4, the proposed method
achieves the best results on eight datasets. It only ranks second on
CSQA, below Few-Shot, and on Coin, below AutoCoT.

Table 5 presents a comparison of the proposed method with some
existing methods when using GPT-3.5-Turbo-0613. Some of these works
simulate real human cognitive behaviors. For example, Role-Play
Prompting (Kong et al., 2024) explores the use of role-playing to im-
prove the reasoning capabilities of LLMs, inspired by the successful ap-
plication of role-playing in downstream tasks. Self-correct (Huang et al.,
2023) enables LLMs to refine their answers through self-reflection.
Self-consistency (Wang et al., 2022) uses a voting mechanism to se-
lect the most consistent answer from multiple responses. Multi-agent
Debate (Du et al., 2024) and Peer Review (Xu et al., 2023) achieve
iteration and optimization of solutions through debates and reviews
among different agents.

Least-to-Most (Zhou et al., 2022) and Zero-shot PS+ (Wang et al.,
2023) decompose problems and then solve each subproblem sequen-
tially. Zhong et al. (2024) focuses on the shortcomings of CoT in
handling complex mathematical problems and proposes Deeply Un-
derstanding the Problems (DUP) to avoid LLM’s semantic misunder-
standing errors. This paper decomposes tasks through role-playing and
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Table 3
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The method proposed in this article performs across various large language models. The Dialogue module is the Agent Dialogues; the Filtering module refers to the multi-role
collaborative filtering framework; and the Repository module refers to the shared experience repository based on Z-score outlier retrieval.

Model Method Arithmetic Commonsense Symbolic Average
Dialogue Filtering Repository ~MultiArith GSM8K AddSub AQuA-RAT SingleEq SVAMP CSQA Strategy Letter Coin
v 83.2 28.7 70.1 25.6 69.1 43.8 65.3 55.1 16.8 58.8 51.6
LLAMA2-13B v v 86.3 30.1 73.4 29.1 74.0 46.5 67.4 56.8 20.4 62.0 54.6
v v v 87.7 30.6 75.2 31.1 75.0 47.1 68.1 57.2 21.2 63.6 55.7
v 82.5 43.1 80.3 33.1 83.3 65.9 73.3 61.8 58.8 94.8 67.7
text-davinci-002 v v 92.7 50.1 86.1 37.8 90.2 71.9 76.1 67.1 59.6 99.2 73.1
v v v 94.3 51.3 87.8 40.9 91.1 72.7 76.8 68.6 60.8 99.2 74.4
v 96.7 78.2 89.4 62.6 93.7 81.7 77.7 68.3 83.4 98.4 83.0
GPT-3.5-Turbo-0613 « v 98.0 80.2 90.6 63.8 95.7 84.1 79.1 70.7 85.0 99.6 84.7
v v v 98.3 83.8 90.9 64.6 96.9 84.3 79.8 71.0 85.2 99.6 85.4
v 97.5 94.8 92.7 74.4 94.5 92.9 84.3 80.7 92.4 100.0 90.4
GPT-4-0613 v v 98.3 96.3 94.4 78.0 96.5 93.8 86.4 81.9 95.4 100.0 92.1
v v v 98.5 96.9 94.7 78.0 97.6 94.1 86.9 82.1 95.4 100.0 92.4
Table 4
Comparison of the method described in this paper with existing methods when using text-davinci-002. Bold indicates the best results, and underline indicates the second-best
results.
Method Arithmetic Commonsense Symbolic
MultiArith GSM8K AddSub AQuA-RAT SingleEq SVAMP CSQA Strategy Letter Coin
Zero-Shot (Kojima et al., 2022) 22.7 12.5 77.0 22.4 78.7 58.8 72.6 54.3 0.2 53.8
Zero-Shot-CoT (Kojima et al., 2022) 78.7 40.7 74.7 33.5 78.7 63.7 64.6 54.8 57.6 91.4
Few-Shot (Wei et al., 2022) 33.8 15.6 83.3 24.8 82.7 65.7 79.5 65.9 0.2 57.2
Manual-CoT (Wei et al., 2022) 91.7 46.9 81.3 35.8 86.6 68.9 73.5 65.4 59.0 97.2
Auto-CoT (Zhang et al., 2022) 92.0 47.9 84.8 36.5 87.0 69.5 74.4 65.4 59.7_ 99.9
Ours (MCF with Repository) 94.3 51.3 87.8 40.9 91.1 72.7 76.8 68.6 60.8 99.2
Table 5
Comparison of the method described in this paper with existing methods when using GPT-3.5-Turbo-0613. Bold indicates the best results, and underline indicates the second-best
results.
Method Arithmetic Commonsense Symbolic
MultiArith GSMB8K AddSub AQuA-RAT SingleEq SVAMP CSQA Strategy Letter Coin
Zero-Shot (Kojima et al., 2022) 79.8 23.8 88.6 28.0 89.4 74.8 73.7 61.1 0.4 21.8
Zero-Shot-CoT (Kojima et al., 2022) 95.8 78.9 83.5 53.5 91.5 77.5 71.5 55.5 70.2 65.8
Least-to-Most (Zhou et al., 2022) 95.5 77.5 91.3 57.4 93.5 80.9 71.9 61.5 83.2 82.8
Self-consistency (Wang et al., 2022) 97.8 81.8 89.4 62.2 93.6 79.8 \ 68.2 \ \
Zero-shot PS+ (Wang et al., 2023) 92.0 79.3 86.5 55.9 93.0 80.7 68.8 62.8 60.6 95.4
Role-Play Prompting (Kong et al., 2024) 97.0 79.6 91.1 63.8 98.2 83.8 77.2 67.0 84.2 98.8
Self-correct (Huang et al., 2023) 93.3 74.1 82.6 53.7 89.1 76.4 \ 52.9 \ \
Multi-agent Debate (Du et al., 2024) 97.2 81.6 88.1 62.6 93.8 78.4 \ 69.4 \ \
Peer Review (Xu et al., 2023) 98.0 832 89.9 65.4 94.2 83.6 \ 69.8 \ \
DUP (Zhong et al., 2024) 97.8 82.3 92.1 60.2 94.9 82.5 74.5 68.5 81.2 97.6
Ours (MCF with Repository) 98.3 83.8 90.9 ’6\6\2 "9\9\/9» 84.3 79.8 71.0 85.2 99.6

Table 6

Comparison of the method described in this paper with existing methods when using GPT-4-0613. Bold indicates the best results, and underline indicates the second-best results.
Method Arithmetic Commonsense Symbolic

MultiArith GSM8K AddSub AQUA-RAT SingleEq SVAMP CSQA Strategy Letter Coin

Zero-Shot-CoT (Kojima et al., 2022) 97.8 94.6 92.4 72.8 95.0 90.4 \ \ \ \
Least-to-Most (Zhou et al., 2022) 97.1 92.1 92.1 71.6 95.0 90.3 \ \ \ \
Zero-shot PS+ (Wang et al., 2023) 98.1 94.3 93.1 75.5 95.3 92.6 \ \ \ \
DUP (Zhong et al., 2024) 98.1 97.1 95.1 771 96.0 94.2 \ \ \ \
Ours (MCF with Repository) 98.5 ,9&\/9» %\/7\ 78.0 97.6 ’Q\flvlv 86.9 82.1 95.4 100.0

activates the response space of LLM in the form of multiple agents,
ultimately achieving competitive results. This study achieved the best
results on 7 out of 10 datasets, second-best results on AQUA-RAT and
SingleEq, and 90.9% on AddSub, only 1.2% lower than the best result
by DUP.

Table 6 showcases the superior LLM GPT-4-0613. It can be seen that
the method proposed in this paper achieves the best results on three
out of six mathematical datasets. On GSM8K, AddSub, and SVAMP, it
achieves the second-best results, being 0.2%, 0.4%, and 0.1% lower
than the optimal results, only slightly inferior to DUP, which is specif-
ically designed to solve mathematical problems.
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5. Conclusion

In this study, we propose a multi-agent collaborative filtering frame-
work equipped with an experience repository. This framework aims to
activate the response space of large language models and identify the
optimal solution at time ¢ through opposing instances. Furthermore,
the introduction of a Z-score-based outlier retrieval algorithm enhances
the performance of experience repository retrieval, avoiding the nega-
tive impacts of retrieving irrelevant experiences. Ablation experiments
on different modules and comparative experiments with other meth-
ods were conducted to gain a deeper understanding of the proposed
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method’s mechanisms. The model’s demonstrated performance further
validates the effectiveness and superiority of this work.

Although, MCF has achieved results far surpassing those of CoT,
the costs and efficiency of inference have become significant consid-
erations. Additionally, exploring the integration of techniques such
as reinforcement learning and multi-agent collaboration could pro-
vide more possibilities for mitigating decision hallucinations in large
language models. Therefore, in future work, we will fine-tune LLMs
using decision trajectories obtained during multi-round dialogues. Ulti-
mately, we aim to enhance the decision-making capabilities of language
models without compromising their general abilities.
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